DCS800

Firmware manual
DCS800 Drives (20 to 5200 A)

Safety instructions

What this chapter contains

This chapter contains the safety instructions which you must follow when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, the motor or driven equipment. Read the safety instructions before you work on the unit.

To which products this chapter applies

This chapter applies to the DCS800... Size D1 to D7 and field exciter units DCF80x.

Use of warnings and notes

There are two types of safety instructions throughout this manual: warnings and notes. Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment. They also tell you how to avoid the danger. Notes draw attention to a particular condition or fact, or give information on a subject. The warning symbols are used as follows:

	Dangerous voltage warning warns of high voltage which can cause physical injury and/or damage to the equipment.
teneral warning warns about conditions, other	
thase caused by electricity, which can result	
equipment. injury and/or damage to the	

Installation and maintenance work

These warnings are intended for all who work on the drive, motor cable or motor. Ignoring the instructions can cause physical injury or death.

Only qualified electricians are allowed to install and maintain the drive.

- Never work on the drive, motor cable or motor when main power is applied.
Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that:

1. Voltage between drive input phases $\mathrm{U} 1, \mathrm{~V} 1$ and W 1 and the frame is close to 0 V .
2. Voltage between terminals C+ and D- and the frame is close to 0 V .

- Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off.
- Do not make any insulation or voltage withstand tests on the drive or drive modules.
- When reconnecting the motor cable, always check that the C+ and D- cables are connected with the proper terminal.

Note:

- The motor cable terminals on the drive are at a dangerously high voltage when the input power is on, regardless of whether the motor is running or not.
- Depending on the external wiring, dangerous voltages (115 V, 220 V or 230 V) may be present on the terminals of relay outputs SDCS-IOB-2 and RDIO.
- DCS800 with enclosure extension: Before working on the drive, isolate the whole drive from the supply.

WARNING! The printed circuit boards contain components sensitive to electrostatic discharge. Wear a grounding wrist band when handling the boards. Do not touch the boards unnecessarily.

Grounding

These instructions are intended for all who are responsible for the grounding of the drive. Incorrect grounding can cause physical injury, death or equipment malfunction and increase electromagnetic interference

- Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and pick-up.
- Make sure that grounding conductors are adequately sized as required by safety regulations.
- In a multiple-drive installation, connect each drive separately to protective earth (PE).
- Minimize EMC emission and make a 360° high frequency grounding of screened cable entries at the cabinet lead-through.
- Do not install a drive with EMC filter on an ungrounded power system or a high resistance-grounded (over 30 ohms) power system.
Note:
- Power cable shields are suitable for equipment grounding conductors only when adequately sized to meet safety regulations.
- As the normal leakage current of the drive is higher than 3.5 mA AC or 10 mA DC (stated by EN 50178, 5.2.11.1), a fixed protective earth connection is required.

Fiber optic cables
WARNING! Handle the fiber optic cables with care. When unplugging optic cables, always grab the connector, not the cable itself. Do not touch the ends of the fibers with bare hands as the fiber is extremely sensitive to dirt. The minimum allowed bend radius is 35 mm (1.4 in.).

Mechanical installation

These notes are intended for all who install the drive. Handle the unit carefully to avoid damage and injury.

- DCS800 sizes D4...D7: The drive is heavy. Do not lift it alone. Do not lift the unit by the front cover. Place units D4 and D5 only on its back.

DCS800 sizes D5...D7: The drive is heavy. Lift the drive by the lifting lugs only. Do not tilt the unit. The unit will overturn from a tilt of about 6 degrees.

- Make sure that dust from drilling does not enter the drive when installing. Electrically conductive dust inside the unit may cause damage or lead to malfunction.
- Ensure sufficient cooling.
- Do not fasten the drive by riveting or welding.

Operation

These warnings are intended for all who plan the operation of the drive or operate the drive. Ignoring the instructions can cause physical injury or death or damage the equipment.

- Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the base speed.
- Do not activate automatic fault reset functions of the Standard Application Program if dangerous situations can occur. When activated, these functions will reset the drive and resume operation after a fault.
- Do not control the motor with the disconnecting device (disconnecting means); instead, use the control panel keys and , or commands via the I/O board of the drive.
- Mains connection You can use a disconnect switch (with fuses) in the power supply of the thyristor power converter to disconnect the electrical components of the unit from the power supply for installation and maintenance work. The type of disconnect used must be a disconnect switch as per EN 60947-3, Class B, so as to comply with EU regulations, or a circuit-breaker type which switches off the load circuit by means of an auxiliary contact causing the breaker's main contacts to open. The mains disconnect must be locked in its "OPEN" position during any installation and maintenance work.
- EMERGENCY STOP buttons must be installed at each control desk and at all other control panels requiring an emergency stop function. Pressing the STOP button on the control panel of the thyristor power converter will neither cause an emergency motor stop, nor will the drive be disconnected from any dangerous potential.
To avoid unintentional operating states, or to shut the unit down in case of any imminent danger according to the standards in the safety instructions it is not sufficient to merely shut down the drive via signals "RUN", "drive OFF" or "Emergency Stop" respectively "control panel" or "PC tool".
- Intended use

The operating instructions cannot take into consideration every possible case of configuration, operation or maintenance. Thus, they mainly give such advice only, which is required by qualified personnel for normal operation of the machines and devices in industrial installations.

If in special cases the electrical machines and devices are intended for use in non-industrial installations - which may require stricter safety regulations (e.g. protection against contact by children or similar) -, these additional safety measures for the installation must be provided by the customer during assembly. Note:

- When the control location is not set to Local (L not shown in the status row of the display), the stop key on the control panel will not stop the drive. To stop the drive using the control panel, press the LOC/REM key and then the stop key

Table of contents

Safety instructions 3
What this chapter contains 3
To which products this chapter applies 3
Use of warnings and notes 3
Installation and maintenance work. 4
Grounding. 5
Mechanical installation 6
Operation 6
Table of contents 8
I/O configuration 15
Chapter overview 15
Digital inputs (Dl's) 15
SDCS-CON-4 / SDCS-IOB-2 15
$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01 15
Configuration 16
Digital outputs (DO's) 18
SDCS-CON-4 / SDCS-IOB-2 18
$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01 18
Configuration 19
Analog inputs (Al's) 21
SDCS-CON-4 21
SDCS-IOB-3 21
$1^{\text {st }}$ RAIO-01 22
$2^{\text {nd }}$ RAIO-01 22
Configuration 22
Scaling 23
Analog outputs (AO's) 25
SDCS-CON-4 / SDCS-IOB-3 25
$1{ }^{\text {st }}$ RAIO-01 25
$2^{\text {nd }}$ RAIO-01 25
Configuration 26
Scaling 26
Adaptive Program 28
Chapter overview 28
Compatibility 28
Safety instructions 28
Reader 28
Use 28
Related publications 28
What is the Adaptive Program 29
Features 29
How to build the program 30
How to connect the program to the drive application 30
How to control the execution of the program 32
Function blocks 33
Chapter overview 33
General rules 33
Block inputs 33
Block input attributes 34
Parameter value as an integer input 35
How the block handles the input 35
How to select the input 35
Constant as an integer input 36
How to set and connect the input 36
Parameter value as a boolean input 37
How the block handles the input 37
Constant as a boolean input 38
How to set and connect the input 38
String input 38
How to select the input 38
Function blocks details 39
ABS 39
ADD 39
AND 40
Bitwise 40
Bset 41
Compare 41
Count 42
D-Pot 42
Event 43
Filter 43
Limit. 44
MaskSet 45
Max 45
Min 46
MulDiv 46
Not Used 46
OR 47
ParRead 47
ParWrite 48
PI 48
PI-Bal 49
Ramp 49
SqWav 50
SR 50
Switch-B 51
Switch-I 51
TOFF 52
TON 53
Trigg 54
XOR 54
Customer diagrams 55
Signal and parameter list 56
Signals and parameters 56
Signals 56
Parameters 58
Group 1 61
Physical actual values 61
Group 2 64
Speed controller signals 64
Group 3 67
Reference actual values 67
Group 4 69
Information 69
Group 5 76
Analog I/O 76
Group 6 77
Drive logic signals 77
Group 7 81
Control words 81
Group 8 86
Status / limit words 86
Group 9 91
Fault / alarm words 91
Group 10 102
Start / stop select 102
Group 11 112
Speed reference input 112
Group 12 117
Constant speeds 117
Group 13 118
Analog inputs 118
Group 14 123
Digital outputs 123
Group 15 125
Analog outputs 125
Group 16 127
System control inputs 127
Group 19 129
Data storage 129
Group 20 131
Limits 131
Group 21 134
Start / stop 134
Group 22 137
Speed ramp 137
Group 23 140
Speed reference 140
Group 24 143
Speed control 143
Group 25 149
Torque reference 149
Group 26 150
Torque reference handling 150
Group 30 153
Fault functions 153
Group 31 162
Motor 1 temperature 162
Group 34 163
Control panel display 163
Group 42 165
Brake control 165
Group 43 167
Current control 167
Group 44 173
Field excitation 173
Group 45 177
Field converter settings 177
Group 47 182
12-pulse operation 182
Group 49 183
Shared motion 183
Group 50 191
Speed measurement 191
Group 51 194
Fieldbus 194
Group 52 195
Modbus 195
Group 70 196
DDCS control 196
Group 71 200
Drivebus 200
Group 83 200
Adaptive program control 200
Group 84 202
Adaptive program 202
Group 85 205
User constants 205
Group 86 206
Adaptive program outputs 206
Group 90 208
Receiving datasets addresses 1 208
Group 91 210
Receiving datasets addresses 2 210
Group 92 210
Transmit datasets addresses 1 210
Group 93 212
Transmit datasets addresses 2 212
Group 94 213
DCSLink control 213
Group 97 221
Measurement 221
Group 98 226
Option modules 226
Group 99 232
Start-up data 232
DCS800 panel operation 237
Chapter overview 237
Start-up 237
Control panel 237
Display overview 238
General display features 238
Output mode 239
Other modes 240
Fault tracing 246
Chapter overview 246
General 246
Fault modes 246
Converter protection 246
Auxiliary undervoltage 246
Armature overcurrent 246
Converter overtemperature / converter fan current 246
Auto-reclosing (mains undervoltage) 247
Mains synchronism 248
Mains overvoltage 249
Communication loss 249
Fan, field and mains contactor acknowledge 250
External fault 250
Bridge reversal 250
Analog input monitor 251
Motor protection 252
Armature overvoltage 252
Residual current 252
Measured motor temperature 252
Klixon 255
Motor thermal model 255
Field overcurrent 258
Armature current ripple 258
Speed feedback monitor 259
Stall protection 260
Overspeed protection 260
Current rise 260
Field undercurrent 260
Tacho polarity 261
Tacho range 261
Status messages 262
Display of status, fault and alarm signals 262
Categories of signals and display options 262
General messages 263
Power-up errors (E) 263
Fault signals (F) 264
Alarm signals (A) 278
User defined alarm by Adaptive Program 286
Appendix A: Firmware structure diagram 287
Appendix B: Index of signals and parameters 291
Index of signals and parameters (alphabetic order) 291

I/O configuration

Chapter overview

The chapter describes the I/O configuration of digital and analog inputs and outputs with different hardware possibilities.

Digital inputs (DI's)

The basic I/O board is the SDCS-CON-4 with 8 standard Dl's. All 8 standard DI's can be replaced with SDCS-IOB-2 and extended by means of one or two RDIO-01 digital I/O extension modules. Thus the maximum number of Dl's is 14.

The hardware source is selected by:

- DIO ExtModule1 (98.03) for DI9 to DI11
- DIO ExtModule2 (98.04) for DI12 to DI14 and
- IO BoardConfig (98.15)

Note:

The maximum amount of digital I/O extension modules is two regardless if an AMIA-01 board is used.

SDCS-CON-4 / SDCS-IOB-2

The standard Dl's are isolated and filtered. Selectable hardware filtering time (DI7 and DI8 on the SDCS-IOB-2):

- 2 ms or 10 ms (jumper S7 and S8)

Input voltages:

- 24 VDC to 48 VDC, 115 VAC or 230 VAC depending on the hardware
- for more details see Hardware Manual

Scan time for DI1 to DI6:

- 5 ms

Scan time for DI7 and DI8:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01

The extension Dl's are isolated and filtered. Selectable hardware filtering time:

- 2 ms or 5 ms to 10 ms

Input voltages:

- 24 VDC to 250 VDC, 110 VAC to 230 VAC
- for more details see RDIO-01 User's Manual

Update time for DI9 to DI14:

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Attention:

To ensure proper connection and communication of the RDIO-01 boards with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

All Dl's can be read from DI StatWord (8.05):

bit	DI	configurable	default setting
0	1	yes	ConvFanAck (10.20)
1	2	yes	MotFanAck (10.06)
2	3	yes	MainContAck (10.21)
3	4	yes	Off2 (10.08)
4	5	yes	E Stop (10.09)
5	6	yes	Reset (10.03)
6	7	yes	OnOff1 (10.15)
7	8	yes	StartStop (10.16)
8	9	yes	-
9	10	yes	-
10	11	yes	-
11	12	no	not selectable
12	13	no	not selectable
13	14	no	not selectable

Configurable = yes:
The Dl's can be connected with several converter functions and it is possible to invert the Dl's - DI1Invert (10.25) to DI11Invert (10.35). In addition the Dl's can be used by Adaptive Program, application program or overriding control.

Configurable $=$ no:
The Dl's can only be used by Adaptive Program, application program or overriding control.

Configurable DI's are defined by means of following parameters:

```
- Direction (10.02)
- Ref1Mux (11.02)
- Reset(10.03)
- SyncCommand (10.04)
- MotFanAck (10.06)
- Hand/Auto (10.07)
- Off2 (10.08)
- E Stop (10.09)
- ParChange (10.10)
- OvrVoltProt (10.13)
- OnOff1 (10.15)
- StartStop (10.16)
- Jog1(10.17)
- Jog2(10.18)
- ConvFanAck (10.20)
- MainContAck(10.21)
- DynBrakeAck (10.22)
- DC BreakAck (10.23)
- Ref2Mux (11.12)
- MotPotUp (11.13)
- MotPotDown (11.14)
- MotPotMin (11.15)
- Ramp2Select (22.11)
- Par2Select (24.29)
- TorqMux (26.05)
- ResCurDetectSel (30.05)
- ExtFaultSel (30.31)
- ExtAlarmSel (30.32)
- M1KlixonSel (31.08)
- M1BrakeAckSel (42.02)
- FldBoostSel (44.17)
- M2KlixonSel (49.38)
- ZeroCurDetect (97.18)
- ResetAhCounter (97.21)
```

Following restrictions apply:

- The position counter synchronization is fixed assigned to input DI7, if
activated via SyncCommand (10.04)
- DI12 to DI14 are only available in the DI StatWord (8.05), thus they can only be used by Adaptive Program, application program or overriding control

Structure of Dl's

Digital outputs (DO's)

The basic I/O board is the SDCS-CON-4 with 7 standard DO's. Standard DO8 is located on the SDCS-PIN-4. All 8 standard DO's can be replaced with SDCS-IOB2 and extended by means of one or two RDIO-01 digital I/O extension modules. Thus the maximum number of DO's is 12 .

The hardware source is selected by:

- DIO ExtModule1 (98.03) for DO9 and DO10
- DIO ExtModule2 (98.04) for DO11 and DO12
- IO BoardConfig (98.15)

Note:

The maximum amount of digital I/O extension modules is two regardless if an AMIA-01 board is used.

SDCS-CON-4 / SDCS-IOB-2

On the SDCS-CON-4 the standard DO's are relay drivers. DO8 is located on the SDCS-PIN-4 and a isolated by means of a relay. If the SDCS-IOB-2 is being used DO6 and DO7 are isolated by means of optocouplers, while the others (DO1 to DO5 and DO8) are isolated by means of relays.
Output values SDCS-CON-4:

- DO6 to DO7 max. $50 \mathrm{~mA} / 22$ VDC at no load
- for more details see Hardware Manual

Output values SDCS-PIN-4:

- DO8 max. 3 A / 24 VDC, max. 0.3 A / 115 VDC / 230 VDC or max. 3 A / 230 VAC
- for more details see Hardware Manual

Output values SCDS-IOB-2:

- DO6 and DO7: max. $50 \mathrm{~mA} / 24 \mathrm{VDC}$
- all others: max. 3 A / $24 \mathrm{VDC}, \max .0 .3 \mathrm{~A} / 115 \mathrm{VDC} / 230 \mathrm{VDC}$ or max. 3 A / 250 VAC
- for more details see Hardware Manual

Update time for DO1 to DO8:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01

The extension DO's are isolated by means of relays.
Output values:

- max. 5 A / 24 VDC, max. 0.4 A / 120 VDC or max. 1250 VA / 250 VAC
- for more details see RDIO-01 User's Manual

Update time for DO9 to DO12:

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Attention:

To ensure proper connection and communication of the RDIO-01 boards with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

All DO's can be read from DO StatWord (8.06):

bit	DI	configurable	default setting	
0	1	yes	FansOn; CurCtrIStat1 (6.03)	bit15
1	2	yes	FieldOn; CurCtrIStat1 (6.03)	bit5
2	3	yes	MainContactorOn; CurCtrIStat1 (6.03)	bit7
3	4	yes	-	
4	5	yes	-	
5	6	yes	-	
6	7	yes	-	bit7
7	8	yes	MainContactorOn; CurCtrIStat1 (6.03)	
8	9	yes	-	
9	10	no	not selectable	
10	11	no	not selectable	
11	12	no	not selectable	

Configurable = yes:
The DO's can be connected with any integer or signed integer of the DCS800 by means of group 14. It is possible to invert the DO's by simply negate DO1Index (14.01) to DO8Index (14.15). In addition the DO's can be used by Adaptive Program, application program or overriding control if the corresponding DOxIndex (14.xx) is set to zero - see DO CtrIWord (7.05).

Configurable = no:
The DO's can only be used by Adaptive Program, application program or overriding control - see DO CtrIWord (7.05).

Note:

DO8 is only available as relay output on the SDCS-PIN-4, if no SDCS-IOB-2 is used.

Structure of DO's

Analog inputs (Al's)

The basic I/O board is the SDCS-CON-4 with 4 standard Al's. All 4 standard Al's can be replaced with SDCS-IOB-3 and extended by means of one or two RAIO-01 analog I/O extension modules. Thus the maximum number of Al's is 8 .

The hardware source is selected by:

- AIO ExtModule (98.06) for AI5 and AI6
- AIO MotTempMeas (98.12) for AI7 and AI8
- IO BoardConfig (98.15)

Note:

The maximum amount of analog I/O extension modules is two regardless if an AMIA-01 board is used.

SDCS-CON-4

Hardware setting:

- switching from voltage input to current input by means of jumper S2 and S3
- for more details see Hardware Manual

Input range Al1 and AI2 set by parameter:

- $\pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Input range Al 3 and Al 4 set by parameter:

- $\pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset

Resolution:

- 15 bits + sign

Update time for Al1 and Al2:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

Update time for AI3 and AI4:

- 5 ms

Additional functions:

- motor temperature measurement for a PTC connected to AI2 - see section Motor protection

SDCS-IOB-3

Hardware setting:

- switching from voltage input to current input by means of jumper S1
- the hardware gain for Al2 and Al3 can be increased by 10 with jumpers S2 and S 3 , thus the input range changes e.g. from $\pm 10 \mathrm{~V}$ to $\pm 1 \mathrm{~V}$
- for more details see Hardware Manual

Input range Al1 to AI4 set by parameter:

- $\pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 15 bits + sign

Update time for Al1 and Al2:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

Update time for AI3 and AI4:

- 5 ms

Additional functions:

- motor temperature measurement for PT100 or PTC connected to A12 and Al3 - see section Motor protection
- residual current detection monitor input via Al4 - see section Motor protection

$1^{\text {st }}$ RAIO-01

Hardware setting:

- input range and switching from voltage to current by means of a DIP switch,
- for more details see RAIO-01 User's Manual

Input range AI5 and AI6 set by parameter:

- $\pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 11 bits + sign

Update time for AI5 and AI6:

- 10 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all Al's are galvanically isolated

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

$2^{\text {nd }}$ RAIO-01

Hardware setting:

- AI7 and AI8 are only used for motor temperature measurement, thus set 0 V to 2 V for 1 PT 100 respectively 0 V to 10 V for 2 or 3 PT100 using the DIP switch
- for more details see RAIO-01 User's Manual

Resolution:

- 11 bits + sign

Update time for AI7 and AI8:

- 10 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all Al's are galvanically isolated
- motor temperature measurement for PT100 connected to AI7 and AI8 - see section Motor protection,

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

The value of Al1 to Al6 and AITacho can be read from group 5.

Al	configurable	default setting

1	yes	-
2	yes	-
3	yes	-
4	yes	-
5	yes	-
6	yes	-
7	temperature	-
8	temperature	-

Configurable = yes:
The Al's can be connected with several converter functions and it is possible to scale them by means of group 13. In addition the Al's can be read by Adaptive Program, application program or overriding control.
Configurable = temperature:
The Al's can only be used by the motor temperature measurement - see M1TempSel (31.05) and M2TempSel (49.35).
Configurable Al's are defined by means of following parameters:
Ref1Sel (11.03)
Ref2Sel (11.06)
TorqUsedMaxSel (20.18)
TorqUsedMinSel (20.19)
TorqRefA Sel (25.10)
TorqCorrect (26.15)
ResCurDetectSel (30.05)
M1TempSel (31.05)
StrtTorqRefSel (42.07)
CurSel (43.02)
M2TempSel (49.35)
Following restrictions apply:

- the residual current detection input is fixed assigned to Al4, if activated via ResCurDetectSel (30.05)
- the motor temperature measurement is fixed assigned to Al2 and Al3 respectively AI7 and AI8, if activated via M1TempSel (31.05) respectively M2TempSel (49.35)

Scaling

It is possible to scale Al1 to AI6 and AITacho with 3 parameters each:

- the range of each Al is set by means of a jumper - distinguishing between current and voltage - and ConvModeAl1 (13.03) to ConvModeAl6 (13.27)
- $+100 \%$ of the input signal connected to an Al is scaled by means of Al1HighVal (13.01) to Al6HighVal (13.25)
- -100 \% of the input signal connected to an AI is scaled by means of

Al1LowVal (13.02) to AI6LowVal (13.26)

Example:

In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of Al1 should equal $\pm 250 \%$ of TorqRefExt (2.24), set:
TorqRefA Sel (25.10) = Al1
ConvModeAl1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$
Al1HighVal (13.01) $=4000 \mathrm{mV}$
Al1LowVal (13.02) $=-4000 \mathrm{mV}$

Fixed assigned Al's:
The residual current detection is fixed assigned to Al4.
The motor temperature measurement is fixed assigned to AI2 and AI3 respectively AI7 and AI8.

AIO MotTempMeas (98.12)
Structure of Al's

Analog outputs (AO's)

The basic I/O board is the SDCS-CON-4 with 3 standard AO's. Two AO's are programmable, the third one is fixed and used to display the actual armature current taken directly from the burden resistors. All 3 standard AO's can be replaced with SDCS-IOB-3 and extended by means of one or two RAIO-01 analog I/O extension modules. Thus the maximum number of AO's is 7 .

The hardware source is selected by:

- AIO ExtModule (98.06) for AO3 and AO4
- AIO MotTempMeas (98.12) for AO5 and AO6
- 10 BoardConfig (98.15)

Note:

The maximum amount of analog I/O extension modules is two regardless if an AMIA-01 board is used.

SDCS-CON-4 / SDCS-IOB-3

Output range AO 1 and AO 2 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
Output range fixed AOCurr:

- 4 V equals 325 \% of M1NomCur (99.03)
- for more details see Hardware Manual

Resolution:

- 11 bits + sign

Update time for AO1 and AO2:

- 5 ms

Update time fixed AOCurr:

- directly taken from hardware

Additional functions:

- the gain of the fixed AOCurr can be adjusted by means of R110 on the SDCS-IOB-3

$1^{\text {st }}$ RAIO-01

Output range AO 3 and AO 4 set by parameter:

- 0 mA to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 12 bits

Update time for AO 3 and AO 4 :

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all AO's are galvanically isolated

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

$2^{\text {nd }}$ RAIO-01

Hardware settings:

- AO5 and AO6 are only used for motor temperature measurement, no additional setting needed
- for more details see RAIO-01 User's Manual

Resolution:

- 12 bits

Update time for AO 5 and $\mathrm{AO} 6:$

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all AO's are galvanically isolated
- motor temperature measurement for PT100 connected to AO5 and AO6 see section Motor protection

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

The value of AO1 and AO2 can be read from group 5.

AO	configurable	default setting
1	yes	-
2	yes	-
3	yes	-
4	yes	-
5	temperature	-
6	temperature	-
Curr	fixed	not selectable

Configurable = yes:
The AO's can be connected with any integer or signed integer of the DCS800 by means of group 15. It is possible to invert the AO's by simply negate IndexAO1 (15.01) to IndexAO4 (15.16). In addition the AO's can be used by Adaptive Program, application program or overriding control if the corresponding IndexAOx (15.xx) is set to zero - see CtrIWordAO1 (15.02) to CtrIWordAO4 (15.17).

Configurable = temperature:
The AO's can only be used by the motor temperature measurement - see M1TempSel (31.05) and M2TempSel (49.35).

Scaling

It is possible to scale AO 1 to AO 4 with 2 parameters each:

- the range of each AO is set by means of ConvModeAO1 (15.03) to ConvModeAO4 (15.18)
- if the range is set to bipolar or unipolar signals with offset, $\pm 100 \%$ of the input signal connected to an AO is scaled by means of ScaleAO1 (15.06) to ScaleAO4 (15.20)
- If the range is set to unipolar signals without offset, only $+100 \%$ of the input signal connected to an AO is scaled by means of ScaleAO1 (15.06) to ScaleAO4 (15.20). The smallest value is always zero
- It is possible to invert the AO's by simply negate IndexAO1 (15.01) to IndexAO4 (15.16)
Example:
In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of AO 1 should equal $\pm 250 \%$ of TorqRefUsed (2.13), set:
IndexAO1 (15.01) = 213
ConvModeAO1 (15.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$
ScaleAO1 (15.05) $=4000 \mathrm{mV}$

Adaptive Program

Chapter overview

The chapter describes the basics of the Adaptive Program and instructs in building a program.

Compatibility

The guide complies with the drive application programs in which the Adaptive Programming features are included.

Safety instructions

Follow all safety instructions delivered with the drive.

- Read the complete safety instructions before you install, commission or use the drive. The complete safety instructions are given at the beginning of the Hardware Manual or QuickGuide.
- Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in the Firmware Manual in the subsection describing the related user-adjustable parameters.

Reader

The reader of the manual is expected to:

- know the standard electrical wiring practices, electronic components and electrical schematic symbols.
- have experience or training in installing, operating or servicing of ABB drives.

Use

The guide is to be used together with DCS800 firmware manual of the drive application program. The firmware manual contains the basic information on the drive parameters including the parameters of the Adaptive Program. The guide gives more detailed information on the Adaptive Program:

- what the Adaptive Program is
- how to build a program
- how the function blocks operate
- how to document the program

Related publications

The user documentation of the drive also includes:

- Firmware manual (3ADW 000 193)
- Hardware manual (3ADW 000 194)
- Guides/supplements for the optional equipment and programs (appropriate manuals are included in the delivery).

What is the Adaptive Program

Conventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make the programming easy, but the choices are limited: you cannot customize the operation any further. The Adaptive Program makes customizing possible without the need of a special programming tool or language, even though the PC programming tool "Drive AP program" makes it easier.

- The program is built of function blocks.
- The control panel is the programming tool.
- The user can document the program by drawing it on block diagram template sheets.
The maximum size of the Adaptive Program is 16 function blocks. The program may consist of several separate functions.

Features

The adaptive programming of DCS800 provides the following features:

- 16 function blocks
- more than 20 block types
- password protection
- 4 different time levels selectable
- check against unconnected blocks
- shift functions
- debug functions
- output forcing
- breakpoint
- single step
- single cycle
- 10 constant value parameters
- additional output write pointer parameter for each block

How to build the program

The programmer connects a function block to other blocks through a Block Parameter Set. The sets are also used for reading values from the drive application program and transferring data to the drive application program. Each Block Parameter Set consists of six parameters in group 84 and a write pointer in group 86.

The figure below shows the use of Block Parameter Set 1 in the DCS800 firmware (parameters 84.04 to 84.09 and 86.01):

- Parameter 84.04 selects the function block type.
- Parameter 84.05 selects the source that input IN1 of the function block is connected to. A negative value means that the signal will be inverted.
- Parameter 84.06 selects the source that input IN2 of the function block is connected to. A negative value means that the signal will be inverted.
- Parameter 84.07 selects the source that input IN3 of the function block is connected to. A negative value means that the signal will be inverted.
- Parameter 84.08 defines the attributes of inputs.
- Parameter 84.09 contains the signal of this function block, which can be used further for other input selections. The user cannot edit this parameter value.
- The signal output is also available with the write pointer 86.01. Parameter 86.01 gets the destination parameter, which should get the signal.

How to connect the program to the drive application

The output of the Adaptive Program needs to be connected to the drive application program. For that purpose there are two possibilities:

- The signal, e.g. 84.09, can be selected for further functions.
- The signal output is available with the write pointer, e.g. 86.01. This parameter is to be set with the destination parameter, which needs the signal output of this function block.

Using of Block Parameter Set 1

Act. Signal/ Parameter table
1.01
1.02
\ldots
99.99

Example
Add to speed reference a constant value and an external additional reference value:

1. Set $84.04=2$ (selection of ADD function)
2. Set $84.05=x x . x x$ (selection of speed reference for Input 1)
3. Set $84.06=x x . x x$ (selection of external ref (Alx) for Input 2)
4. Set $84.07=1500$ (constant value for Input 3)
5. Set $84.08=4000 \mathrm{~h}$ (because Input $3=$ constant $->$ Bit $14=1$--> 4000h)
6. 84.09=xxxx (contains the computed value; can be read from system's parts e.g. Master Follower channel, other Block Parameter Set Inputs)
7. Set $86.01=x x . x x$ (write computed value to destination for further processing)

How to control the execution of the program

The Adaptive Program executes the function blocks in numerical order, all blocks on the same time level. This cannot be changed by the user. The user can:

- select the operation mode of the program (stop, start, editing, single cycling, single stepping)
- adjust the execution time level of the program
- delete or add blocks.

Function blocks

Chapter overview

The chapter describes the function blocks.

General rules

The use of block input 1 (BlockxIn1) is compulsory (it must not be left unconnected). Use of input 2 (Blockxln2) and input 3 (BlockxIn3) is voluntary for the most blocks. As a rule of thumb, an unconnected input does not affect the output of the block.
The Attribute Input (BlockxAttrib) is to set with the attributes, like declaration of constant and bits, of all three inputs.

Block inputs

The blocks use two input formats:

- integer
- boolean

The used format varies depending on the block. For example, the ADD block uses integer inputs and the OR block boolean inputs.

Note: The inputs of the block are read when the execution of the block starts, not simultaneously for all blocks!

Block input attributes

Block inputs gets the parameter of signal source or the value of a constant.
Depending on the used block function and depending on the desired function the attributes of all three inputs are to be set as integer, constant or as selection of a bit of a 16-bit word source.
Therefore it is used a 16-bit word, which is defined as following:

15 12	11	8		4	3	Bit number
0						packed Boolean
3. 2. 1. To use an input as a constant value, the bit belonging to the input must be set high.Function block input 3 bit selection This function offers the opportunity to isolate a certain bit out of a packed Boolean word. It is used to connect the Boolean inputs of a function block to a certain bit of a packed Boolean word. With: Bit $0==0000=0$ oh selection Bit $1==0001==1 \mathrm{~h}$$\ldots$Bit $15==1111==$ Fh						

Example:

Example of attribute parameter, with
BlockxIn1 as boolean, bit 10
BlockxIn2 as constant
BlockxIn3 as integer
\rightarrow Bits converted into hex, the value 200A (H) is to be set into parameter BlockxAttrib.

Parameter value as an integer input

How the block handles the input

The block reads the selected value in as an integer.
Note: The parameter selected as an input should be an integer value. The internal scaling for each parameter is given in the Firmware Manual.

How to select the input

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Set the address, from which the input value is to be read, with group $\times 100+$ index (e.g. parameter $22.01=2201$). A negative address (e.g. -2201) will act an inversion of the connected value.
The figure below shows the panel display when the input Blockxln1 (with e.g. $\mathrm{x}=1$ for 1 . block) selection parameter is in edit mode. The value is inverted if there is a minus (-) sign in the inversion field. The bit selection field is not effective for an integer or string type input.

Display of panel

	REM U PAR EDIT---------------------
Connection to 503 as output of AI1 (group $\times 100+$ index)	8405 Block1In1
	CANCEL

Example: Analog input Al1, which is supplied with a voltage source of 5.8 V , in a drive equipped with the DCS800 firmware. How is the signal connected to the MAX block as function block 1 in the Adaptive Program? What is the value at the block input?
Al1 is connected to the block as follows:

- Scroll to the input Block1ln1 selection parameter 84.05 and shift to edit mode (Enter).
- Set the address of 503 , because group 5 and index 3 contains the input value of Al1 ($05.03=05 \times 100+3=503$).
The value at the input of the block is 5800 , since the integer scaling of actual signal 5.03 is: $0.001 \mathrm{~V}=1$ (with default setting of Al1, given in the Firmware Manual).

Constant as an integer input

How to set and connect the input

Option 1

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Give the constant value to this input parameter (double arrow and arrow keys).
- Accept by Enter.
- Scroll to attribute parameter (BlockxAttrib)
- Set the bit for constant attribute of this input in BlockxAttrib parameter.
- Accept by Enter.

The figure below shows the panel display when the input BlockxIn1 selection parameter is in edit mode and the constant field is visible. The constant may have a value from - 32768 to 32767 . The constant cannot be changed while the Adaptive Program is running.
Display of panel

Display of panel

Setting of constant value of Block1In2 input

Option 2

- Set the constant to one of the parameters 85.01 to 85.10 reserved for the constants.
- Connect the constant value to a block as usual by the input selection parameter.
The constants can be changed while the Adaptive Program is running. They may have values from -32767 to 32767 .

Note: A constant like option 1 can only be changed in Edit mode. If the constant may be modified during running, a constant parameter like option 2 is more expediently

Parameter value as a boolean input

How the block handles the input

- The block reads the selected value as an integer.
- The block uses the bit defined by the bit field as the boolean input.

Bit value 1 is boolean value true and 0 is boolean value false
Example: The figure below shows the value of input BlockxIn1 selection parameter when the input is connected to a bit indicating the status of digital input DI2.
In DCS800 firmware, the digital input states are internally stored as actual signal 8.05 DI StatWord. Bit 1 corresponds to DI2, bit 0 to DI1.

Display of panel

Display of panel

Setting of bit 1 of block1ın3

REM U PAR EDIT--------------------
8408 Block1Attrib
CANCEL

How to select the input
See the section Parameter value as an integer input above.
Note: The parameter selected as an input should have a packed boolean value (binary data word). See the Firmware Manual.

Constant as a boolean input

How to set and connect the input

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Give the constant. If boolean value true is needed, set the constant to -1. If boolean value false is needed, set to 0 .
- Accept by Enter.
- Scroll to attribute parameter (BlockxAttrib)
- Set the bit for constant attribute of this input in BlockxAttrib parameter.
- Accept by Enter.

String input

How to select the input
String input is not needed yet. With the EVENT block the text out of the fault, alarm or notice lists will be selected; see chapter "Status".
For changing this text another tool is necessary.

Function blocks details

General Each of the 16 function blocks has one up to max. three input parameters (group 84), which contains either an output address or a value of constant.

One further parameter is used for the attributes of these inputs. This attribute parameter is to be edited manually, if functions blocks are edited by using panel or by using parameter browser of DriveWindow (light).
By using Adaptive Programming PC tool this attribute parameter will be set automatically.
The output OUT, group 84, can be used for further inputs of function blocks. For writing the output value into standard parameters the output pointer, marked with () \rightarrow, is to be set to the desired standard parameter. Output pointers can be found in group 86.

ABS	Type	Arithmetic function
	Illustration	ABS
		-IN1 -IN2 -IN3 In
	Operation	The output is the absolute value of input IN1 multiplied by IN2 and divided by IN3. OUT = IIN1\| * IN2 / IN3
	Connections	$\begin{array}{ll}\text { Input IN1, IN2 and IN3 } & : 16 \text { bit integer values (15 bits + sign) } \\ \text { Output (OUT) } & : 16 \text { bit integer (15 bits + sign) }\end{array}$
ADD	Type	Arithmetic function
	Illustration	ADD
	Operation	The output is the sum of the inputs. $\mathrm{OUT}=\mathrm{IN} 1+\mathrm{IN} 2+\mathrm{IN} 3$
	Connections	Input IN1, IN2 and IN3 : 16 bit integer values (15 bits + sign) Output (OUT) : 16 bit integer (15 bits + sign $)$

AND	Type	Logical function				
	Illustration	AND				
		$\begin{aligned} & \text { IN1 } \\ & \text { IN2 } \end{aligned}$				
	Operation	The output is true if all connected inputs are true. Otherwise the output is false. Truth table:				
		IN1	IN2	IN3	OUT (binary)	OUT (value on display)
		0	0	0	False (All bits 0)	0
		0	0	1	False (All bits 0)	0
		0	1	0	False (All bits 0)	0
		0	1	1	False (All bits 0)	0
		1	0	0	False (All bits 0)	0
		1	0	1	False (All bits 0)	0
		1	1	0	False (All bits 0)	0
		1	1	1	True (All bits 1)	-1
	Connections	Input IN1, IN2 and IN3 Output (OUT) boolean values $: 16$ bit integer value (packed boolean)				
Bitwise	Type	Logical function				
	Illustration	Bitwise IN1				
		$\begin{array}{\|ll\|} \hline \text { IN1 } & \\ \text { IN2 } & \\ - \text { IN3 } & \text { OUT } \\ \hline \end{array}$				
	Operation	The block compares bits of three 16 bit word inputs and forms the output bits as follows:				
		OUT $=($ IN1 OR IN2) AND IN3.				

Example, operation shown with only one bit:

IN1	IN2	IN3	OUT
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

Example, operation shown with whole word:

Input	=> IN1	bits																=> OUT	$\begin{gathered} \hline \text { Output } \\ \text { [word] } \end{gathered}$
[word]		15															0		
20518		0	1	0	1	0	0	0	0	0	0	1	0	0	1	1	0		
4896	=> IN2	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0		
17972	=> IN3	0	1	0	0	0	1	1	0	0	0	1	1	0	1	0	0		
		0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0		16932

[^0]

Output integer value, which is shown on display, is the sum of the bits :

bit 0	bit $\mathbf{1}$	bit $\mathbf{2}$	bit $\mathbf{3}$	OUT (value on display)
0	0	0	0	0
1	0	0	0	1
0	1	0	0	2
0	0	1	0	4
0	0	0	1	8
1	0	0	1	9
0	1	0	1	10
0	0	1	1	12

Connections Input IN1, IN2 and IN3 : 16 bit integer values (15 bits + sign) Output (OUT) : 16 bit integer (packed boolean)

Event Type Viewing function
 Illustration

Operation Input IN1 triggers the event. IN2 selects the number of fault, alarm, notice or trip texts. IN3 selects the type of the event (alarm, fault, notice or trip).

IN1	Activation input (boolean)			
	0->1	block activates the event		
	0	block deactivates the event		
IN2	Selection of displayed message. There exists 5 different messages, which are selected by using numbers depending on the type of event: The default message will be found in brackets.			
	Alarms		Faults and Trips	Notices
	301 (APAlarm1)		601 (APFault1)	801
	302 (APAlarm2)		602 (APFault2)	802
	303 (APAlarm3)		603 (APFault3)	803
	304 (APAlarm4)		604 (APFault4)	804
	305 (APAlarm5)		605 (APFault5)	805
IN3	Selection of type of event			
	0	Alarm; shown as A30x		
	1	Fault ; shown as F60x. Faults have to be reset.		
	2	Notice, shown as N80x		
	3	Trip ; shown as fault F60x. A Trip will also open a connected DC breaker. Trips have to be reset.		

Connections Input IN1 : 16 bit integer values (15 bits + sign)
Input IN2, IN3 : Selection of byte (compulsory)
Filter \quad Type \quad Arithmetic function

Illustration

Filter
IN1
- IN2
- IN3 OUT

Operation The output is the filtered value of input IN1. Input IN2 is the filtering time.
OUT $=\operatorname{IN} 1 \cdot\left(1-\mathrm{e}^{-\mathrm{UN} 2}\right)$
Note: The internal calculation uses 32 bits accuracy to avoid offset errors.

Connections	Input IN1	$: 16$ bit integer value (15 bits + sign)
	Input IN2	$: 16$ bit integer value $(15$ bits + sign $)$. One corresponds to 1 ms.

Limit Type Logical function
Illustration

Limit
IN1
- IN2
- IN3

Operation Value, connected to input IN1 will be limited with input IN2 as upper limit and with input IN3 as lower limit.
The output OUT makes the limited input value available.
The output stays with 0 , if the lower limit (input IN3) is greater or equal than the upper limit (input IN2).

Connections Input IN1, IN2 and IN3 : 16 bit integer value (15 bits + sign)
Output (OUT) : 16 bit integer value (15 bits + sign)

Example, operation shown with only one bit:,
\ldots with IN3 $=$ Set

IN1	IN2	IN3	OUT						
0	0	True	$\mathbf{0}$						
1	0	True	$\mathbf{1}$						
1	1	True	$\mathbf{1}$						
0	1	True	$\mathbf{1}$	\quad	IN1	IN	IN2	IN3	OUT
:---	:---	:---	:---	:---					
0	0	False	0						
1	0	False	$\mathbf{1}$						
1	1	False	0						
0	$\mathbf{1}$	False	0						

Example, operation shown with whole word:

Input	bits											=> OUT	Output
[word]	15										0		[word]
26214 => IN1	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	$0 \quad 1$	10	0	1	1	0	0	1	1	0		
-13108 => IN2	$\begin{array}{lllll}1 & 1 & 0 & 0\end{array}$	11	0 0	1	1	0	0	1	1	0	0		
	$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	11	10	1	1	1	0	1	1	1	0		-4370

	Connections	Input IN1 and IN2 Input 3 Output OUT	16 bit integer value (packed boolean) boolean 16 bit integer value (packed boolean)
Max	Type	Arithmetic function	
	Illustration	Max IN1 -IN2 -IN3 - OUT	
	Operation	The output is the highest input value.OUT = MAX (IN1, IN2, IN3)	
		Note: Open input will be taken as value zero.	
	Connections	Input IN1, IN2 and IN3 Output (OUT)	: 16 bit integer values (15 bits + sign) : 16 bit integer (15 bits + sign)

Min	Type	Arithmetic function
	Illustration	Min
		-IN1 -IN2 - IN3
	Operation	The output is the lowest input value. OUT = MIN (IN1, IN2, IN3)
		Note: Open input will be taken as value zero.
	Connections	$\begin{array}{ll}\text { Input IN1, IN2 and IN3 } & \quad 16 \text { bit integer values (15 bits + sign) } \\ \text { Output (OUT) } & : 16 \text { bit integer (} 15 \text { bits }+ \text { sign })\end{array}$
MulDiv	Type	Arithmetic function
	Illustration	MulDiv
		-IN1 -IN2 - In3
	Operation	The output is the product of input IN1 and input IN2 divided by input IN3. OUT $=(\operatorname{IN} 1 \cdot \operatorname{IN} 2) / \mathrm{IN} 3$
	Connections	Input IN1, IN2 and IN3 : 16 bit integer values (15 bits + sign) Output (OUT) : 16 bit integer (15 bits + sign)
Not Used	Type	-
	Illustration	NO
		-IN1 -IN2 - In3
	Operation	Block is not enabled and not working (default setting).
	Connections	-

Operation The output is true if any of the inputs is true. Truth table:

IN1	IN2	IN3	OUT (binary)	
0	0	0	False (All bits 0)	0
0	0	1	True (All bits 1)	-1
0	1	0	True (All bits 1)	-1
0	1	1	True (All bits 1)	-1
1	0	0	True \quad (All bits 1)	-1
1	1	0	True (All bits 1)	-1
1	1	1	True (All bits 1)	-1

Connections Input IN1, IN2 and IN3 : boolean values Output (OUT) : 16 bit integer value (packed boolean)

ParRead

Logical function

Illustration

ParRead
- IN1
- IN2
- IN3 OUT

Operation Output (OUT) gives the value of a parameter, which is defined with input IN1 as parameter group and input IN2 as parameter index.

Example for reading parameter 22.01:
input IN1 = 22
input IN2 $=01$

Connections Input IN1 and IN2 $\quad: 16$ bit integer value (15 bits + sign)
Output (OUT) : 16 bit integer value (15 bits + sign)

Note: The internal calculation uses 32 bits accuracy to avoid offset errors.

Connections	Input IN1	: 16 bit integer value (15 bit + sign)
	Input IN2	: 16 bit integer value (15 bit + sign)
		Gain factor. 100 corresponds to 1.
	Input IN3	: Integrator coefficient. 100 corresponds to 1. 10000 corresponds to 100.
	Output OUT	: 16 bit integer (15 bits + sign).
		The range is limited to $0 \ldots 10000$.

SqWav	Type	Arithmetic function			
	Illustration	SqWav			
		-IN1 -IN2 -IN3 OUT			
	Operation	The output OUT alternates between the value of input IN3 and zero (0), if the block is enabled with value of input IN1 = true. The period is set with input IN 2 with $1=1 \mathrm{~ms}$.			
	Connections	Input IN1 $:$ boolean value Input IN2 $: 16$ bit integer value Input IN3 $: 16$ bit integer value $(15$ bits + sign $)$ Output (OUT) $: 16$ bit integer value $(15$ bits + sign $)$			
SR	Type	Logical function			
	Illustration	SR - IN1 IIN2 IIN3 - OUT			
	Operation	Set/reset block. Input IN1 sets and IN2 and IN3 reset the output. - If IN1, IN2 and IN3 are false, the current value remains at the output. - If IN1 is true and IN2 and IN3 are false, the output is true. - If IN2 or IN3 is true, the output is false.			
		IN1 ${ }^{\text {IN }}$	IN3	OUT (binary)	OUT (value on display)
		0 0	0	Output	Output
		0 0	1	False (All bits 0)	0
		0 0	0	False (All bits 0)	0
		0	1	False (All bits 0)	0
		1 0	0	True (All bits 1)	-1
		1 0	1	False (All bits 0)	0
		1 1	0	False (All bits 0)	0
		1×1	1	False (All bits 0)	0
	Connections	Input IN1, IN2 and IN3 Output (OUT)		: boolean values 16 bit integer value (15 bits + sign)	

Switch-B Type Logical function

Illustration

Switch-B
IN1
- IN2
- IN3 OUT

Operation The output is equal to input IN2 if input IN1 is true and equal to input IN3 if input IN1 is false.

IN1			OUT	OUT (value on display)
0			$=$ IN3	True $=-1$
1			$=$ IN2	False $=0$

	Connections	Input IN1, IN2 and IN3 Output (OUT)		boolean values 16 bit integer value (packed boolean)
Switch-I	Type	Logical function		
	Illustration	Switch-I		
		$\begin{array}{\|l\|} \hline \text { IN1 } \\ -\operatorname{IN} 2 \\ -\operatorname{IN} 3 \\ \hline \end{array}$		
	Operation	The output is equal to input IN2 if input IN1 is true and equal to input IN3 if input IN1 is false.		
		IN1	OUT	
		0	= IN3	
		1	= IN2	

Connections Input IN1
: boolean value
Input IN2 and IN3 : 16 bit integer values (15 bits + sign)
Output (OUT) : 16 bit integer value (15 bits + sign)
TOFF Type Logical function

Illustration

TOFF
IN1
- IN2
- IN3 OUT

Operation The output is true when input IN1 is true. The output is false when input IN1 has been false for a time equal or longer than input IN2.

Values on display: True $=-1$, false $=0$.
With input $3=$ False the delay time of input 2 is scaled in milliseconds (ms), with input $3=$ True the delay time of input 2 is scaled in seconds (s).

Connections

Input IN1 and IN3	$:$ boolean value
Input IN2	$: 16$ bit integer value (15 bits + sign).
Output (OUT)	$: 16$ bit integer value (packed boolean)

TON Type Logical function
Illustration

TON
IN1
- IN2
- IN3

Operation The output is true when input IN1 has been true for a time equal or longer than input IN2. The output is false when the input is false.

Values on display: True $=-1$, false $=0$.
With input $3=$ False the delay time of input 2 is scaled in milliseconds (ms), with input $3=$ True the delay time of input 2 is scaled in seconds (s).

Connections

Input IN1 and IN3	$:$ boolean value
Input IN2	$: 16$ bit integer value (15 bits + sign
Output (OUT)	$: 16$ bit integer value (packed boolean)

Customer diagrams

This chapter includes three blank block diagram sheets on which the Adaptive Program can be documented.

Signal and parameter list

Signals and parameters

This chapter contains all signals and parameters.

Signals

Signals are measured and calculated actual values of the drive. This includes the control-, status-, limit-, fault- and alarm words. The drive's signals can be found in groups 1 to 9 . None of the values inside these groups is stored in the FLASH memory and thus volatile.

The following table gives an overview of all signal groups:

Group	Description	Comment
1	Physical actual values	
2	Speed controller signals	
3	Reference actual values	
4	Information	self identification
5	Analog I/O	
6	Drive logic signals	
7	Control words	Command words
8	Status / limit words	detection on operation and limits
9	Fault / alarm words	diagnosis information

Index	Signal / Parameter name			=
1.08	MotTorq (motor torque) Motor torque in percent of the active motor nominal torque: - Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			- ${ }^{\circ}$ ய
2.17	SpeedRefUsed (used speed reference) Used speed reference selected with: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Int. Scaling: (2.29) Type: SI Volatile: Y			E0

Sample of signals
All signals are read-only. However the overriding control can write to the control words, but it only affects the RAM.

Min., max., def.:
Minimum, maximum and default values are not valid for groups 1 to 9 .

Unit:

Shows the physical unit of a signal, if applicable. The unit is displayed in the control panel and PC tools.

E/C:

By means of USI Sel (16.09) it is possible to change between compact (C) and extended (E) signal and parameter list. The compact list contains only signals and parameters used for a typical commissioning.

Group.Index:

Signal and parameter numbers consists of group number and its index.

Integer Scaling:

Communication between the drive and the overriding control uses 16 bit integer values. The overriding control has to use the information given in integer scaling to read the value of the signal properly.

Example1:

If MotTorq (1.08) is read from the overriding control an integer value of 100 corresponds to 1%.

Example2:

If SpeedRefUsed (2.17) is read from the overriding control 20.000 equals the speed (in rpm) shown in SpeedScaleAct (2.29) .

Type:

The data type is given with a short code:
I = 16-bit integer value ($0, \ldots, 65536$)
SI $=16$-bit signed integer value $(-32768, \ldots, 32767)$
C: = text string

Volatile:

$\mathrm{Y}=$ values are NOT stored in the FLASH, they will be lost when the drive is deenergized
$\mathrm{N}=$ values are stored in the FLASH, they will remain when the drive is deenergized

Parameters

This chapter explains the function and valid values or selections for all parameters. They are arranged in groups by their function. The following table gives an overview of all parameter groups:

Group	Description
10	Start / stop select
11	Speed reference input
12	Constant speeds
13	Analog inputs
14	Digital outputs
15	Analog outputs
16	System control inputs
19	Data storage
20	Limits
21	Start / stop
22	Speed ramp
23	Speed reference
24	Speed control
25	Torque reference
26	Torque reference handling
30	Fault functions
31	Motor 1 temperature
34	Control panel display
42	Brake control
43	Current control
44	Field excitation
45	Field converter settings
47	12-pulse operation
49	Shared motion
50	Speed measurement
51	Fieldbus
52	Modbus
70	DDCS control
71	Drivebus
83	Adaptive program control
84	Adaptive program
85	User constants
86	Adaptive program outputs
90	Receiving datasets addresses 1
91	Receiving datasets addresses 2
92	Transmit datasets addresses 1
93	Transmit datasets addresses 2
94	DCSLink control
97	Measurement
98	Option modules
99	Start-up data

Index	Signal / Parameter name		$\stackrel{\times}{\text { ® }}$	in		
20.07	TorqMaxSPC (maximum torque speed controller) Maximum torque limit - in percent of the active motor nominal torque - at the output of the speed controller: - TorqRef2 (2.09) Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}		$\stackrel{\sim}{\sim}$			ш
23.01	SpeedRef (speed reference) Main speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: Y		O		E	

Sample of parameters

Parameter changes by control panel, DriveWindow or DriveWindow Light are stored in the FLASH. Changes made by the overriding control are only stored in the RAM.

Min., max., def.:
Minimum and maximum value or selection of parameter.
Default value or default selection of parameter.

Unit:

Shows the physical unit of a parameter, if applicable. The unit is displayed in the control panel and PC tools.

E/C:

By means of USI Sel (16.09) it is possible to change between compact (C) and extended (E) signal and parameter list. This influences parameter display of control panel. The compact list contains only signals and parameters used for a typical commissioning.

Group.Index:

Signal and parameter numbers consists of group number and its index.

Integer Scaling:

Communication between the drive and the overriding control uses 16 bit integer values. The overriding control has to use the information given in integer scaling to change the value of the parameter properly.
Example1:
If TorqMaxSPC (20.07) is written to from the overriding control an integer value of 100 corresponds to 1%.
Example2:
If SpeedRef (23.01) is written to from the overriding control 20.000 equals the speed (in rpm) shown in SpeedScaleAct (2.29).

Type:

The data type is given with a short code:
I $=16$-bit integer value ($0, \ldots, 65536$)
SI $=16$-bit signed integer value $(-32768, \ldots, 32767)$
C : = text string

Volatile:

$\mathrm{Y}=$ values are NOT stored in the FLASH, they will be lost when the drive is deenergized
$\mathrm{N}=$ values are stored in the FLASH, they will remain when the drive is deenergized

Index	Signal / Parameter name		$\stackrel{\times}{\square} \times$	
$\begin{aligned} & \text { 을 } \\ & \text { O} \\ & \text { O} \end{aligned}$	Physical actual values			
1.01	MotSpeedFilt (filtered motor speed) Filtered actual speed feedback: - Choose motor speed feedback with M1SpeedFbSel (50.03) - Filtered with 1 s and - SpeedFiltTime (50.06) Int. Scaling: (2.29) Type: SI Volatile: Y			$=0$
1.02	SpeedActEMF (speed actual from EMF) Actual speed calculated from EMF. Int. Scaling: (2.29) Type: SI Volatile: Y	'		0
1.03	SpeedActEnc (speed actual from encoder) Actual speed measured with pulse encoder. Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}	'	'	0
1.04	```MotSpeed (motor speed) Actual motor speed: Choose motor speed feedback with M1SpeedFbSel (50.03). If M1SpeedFbSel (50.03) is set to External the signal is updated by Adaptive Program, application program or overriding control. SpeedFiltTime (50.06) Int. Scaling: (2.29) Type: SI Volatile: Y```		\|	≈ 0
1.05	SpeedActTach (speed actual from tacho) Actual speed measured with analog tacho. Int. Scaling: (2.29) Type: SI		'	앙
1.06	MotCur (motor current) Relative actual motor current in percent of M1NomCur (99.03). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y		\|	
1.07	MotTorqFilt (filtered motor torque) Relative filtered motor torque in percent of the active motor nominal torque: - Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period and - TorqActFiltTime (97.20) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{Y}		'	$\bigcirc 0$
1.08	MotTorq (motor torque) Motor torque in percent of the active motor nominal torque: - Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		'	우 ${ }^{\text {¢ }}$
1.09	CurRipple (current ripple) Relative current ripple monitor output in percent of M1NomCur (99.03). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		'	ㅇㅇ ㄹ
1.10	```CurRippleFilt (filtered current ripple) Relative filtered current ripple monitor output in percent of M1NomCur (99.03): - Filtered with }200\textrm{ms Int. Scaling: 100== 1% Type: SI Volatile: Y```			$\bigcirc 0$

Index	Signal / Parameter name			8	E	
1.11	MainsVoltActRel (relative actual mains voltage) Relative actual mains voltage in percent of NomMainsVolt (99.10). Int. Scaling: $100=1 \%$ Type: I Volatile: Y				-	0
1.12	MainsVoltAct (actual mains voltage) Actual mains voltage: - Filtered with 10 ms Int. Scaling: $1==1 \mathrm{~V}$ Type: Volatile: Y	'			$>$	0
1.13	ArmVoltActRel (relative actual armature voltage) Relative actual armature voltage in percent of M1NomVolt (99.02). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				\bigcirc	0
1.14	ArmVoltAct (actual armature voltage) Actual armature voltage: - Filtered with 10 ms Int. Scaling: $1==1$ V Type: SI Volatile: \mathbf{Y}	'			$>$	0
1.15	ConvCurActRel (relative actual converter current [DC]) Relative actual converter current in percent of ConvNomCur (4.05). Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}	'			\bigcirc	0
1.16	ConvCurAct (actual converter current [DC]) Actual converter current: - Filtered with 10 ms Int. Scaling: $1==1$ A Type: SI Volatile: \mathbf{Y}				<	40
1.17	EMF VoltActRel (relative actual EMF) Relative actual EMF in percent of M1NomVolt (99.02): EMF VoltActRel (1.17). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y				\bigcirc	0
1.18	Unused					
1.19	Unused					
1.20	Mot1TempCalc (motor 1 calculated temperature) Motor 1 calculated temperature from motor thermal model. Used for motor overtemperature protection. - M1AlarmLimLoad (31.03) - M1FaultLimLoad (31.04) Int. Scaling: $100=1 \%$ Type: I Volatile: Y				$\bigcirc \bigcirc$	
1.21	Mot2TempCalc (motor 2 calculated temperature) Motor 2 calculated temperature from motor thermal model. Used for motor overtemperature protection. - M2AlarmLimLoad (49.33) - M2FaultLimLoad (49.34) Int. Scaling: $100=1 \%$ Type:				$\bigcirc \bigcirc$	
1.22	Mot1TempMeas (motor 1 measured temperature) Motor 1 measured temperature. Used for motor overtemperature protection: 				-	- 0

Index	Signal / Parameter name	\cdots	$\stackrel{4}{80}$		
1.23	Mot2TempMeas (motor 2 measured temperature) Motor 2 measured temperature. Used for motor overtemperature protection: - Unit depends on setting of M2TempSel (49.35): NotUsed 1 to 6 PT100 ${ }^{\circ} \mathrm{C}$ PTC $\quad \Omega$ Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: $\mathrm{I} \quad$ Volatile: Y			$\begin{array}{ll} \therefore & w \\ 0 \\ 0 \\ 0 \end{array}$	
1.24	BridgeTemp (actual bridge temperature) (Actual bridge temperature in degree centigrade. Int. Scaling: $1==1^{\circ} \mathrm{C} \quad$ Type: \quad Volatile: Y			00	
1.25	CtrIMode (control mode) Used control mode: $\begin{array}{\|clll} 0 & =\text { NotUsed } & & \\ 1 & =\text { SpeedCtrI } & \text { speed control } & \\ 2=\text { TorqCtrI } & \text { torque control } & \\ 3=\text { CurCtrl } & \text { current control } & \\ \text { TorqSel (26.01) } & & \\ \text { Int. Scaling: } \mathbf{1}=\mathbf{1} & \text { Type: } & \text { C } & \text { Volatile: } \mathbf{Y} \end{array}$			ш	
1.26	Unused				
1.27	Unused				
1.28	Unused				
1.29	Mot1FIdCurRel (motor 1 relative actual field current) Motor 1 relative field current in percent of M1NomFldCur (99.11). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			$\bigcirc 0$	
1.30	Mot1FIdCur (motor 1 actual field current) Motor 1 field current: Filtered with 500 ms Int. Scaling: $100=1$ A Type: SI Volatile: \mathbf{Y}			$\varangle 0$	
1.31	Mot2FIdCurRel (motor 2 relative actual field current) Motor 2 relative field current in percent of M2NomFldCur (49.05). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			$\bigcirc 0$	
1.32	Mot2FIdCur (motor 2 actual field current) Motor 2 field current: - Filtered with 500 ms Int. Scaling: $100=1$ A Type: SI Volatile: Y			$\varangle \pm$	
1.33	ArmCurActSI (12-pulse slave actual armature current) Actual armature current of 12-pulse slave: - Valid in 12-pulse master only Int. Scaling: 1==1 A Type: SI Volatile: Y			$\varangle \pm$	
1.34	Unused			Ш	
1.35	ArmCurAll (12-pulse parallel master and slave actual armature current) Sum of actual armature current for 12-pulse master and 12-pulse slave: - Filtered with 10 ms - Valid in 12-pulse master only - Valid for 12-pulse parallel only Int. Scaling: $1==1$ A Type: SI Volatile: Y			$\varangle \\|$	
1.36	Unused				

Index	Signal / Parameter name	-	$\stackrel{\times}{6}$)	5
1.37	DC VoltSerAll (12-pulse serial master and slave actual DC voltage) Sum of actual armature voltage for 12-pulse master and 12-pulse slave: - Valid in 12-pulse master only - Valid for 12-pulse serial/sequential only Int. Scaling: $1==1 \mathrm{~V}$ Type: SI Volatile: Y	'	' '	$>$	ш
1.38	MainsFreqAct (actual mains frequency) Actual mains frequency. Int. Scaling: $100==1 \mathrm{~Hz}$ Type: I Volatile: Y	'			
1.39	AhCounter (ampere-hour counter) Ampere hour counter. $100=1 \mathrm{kAh}$ Type:	'			䄳
1.40	Unused				
1.41	ProcSpeed (process speed) Calculated process/line speed: Scaled with WinderScale (50.17) Int. Scaling: $10=\mathbf{1 m} / \mathrm{min}$ Type: SI Volatile: Y	'			
$\begin{aligned} & \mathbf{N} \\ & \text { 을 } \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	Speed controller signals				
2.01	SpeedRef2 (speed reference 2) Speed reference after limiter: $\quad-\quad$ M1SpeedMin (20.01) $-\quad$ M1SpeedMax (20.02) Int. Scaling: (2.29) Type:				00
2.02	SpeedRef3 (speed reference 3) Speed reference after speed ramp and jog input. Int. Scaling: (2.29) Type: SI Volatile: Y	'	'		EO
2.03		'			EO
2.04	TorqPropRef (proportional part of torque reference) P-part of the speed controller's output in percent of the active motor nominal torque. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'			이
2.05	TorqIntegRef (integral part of torque reference) I-part of the speed controller's output in percent of the active motor nominal torque. Int. Scaling: $100==1 \%$ Type: SI Volatile: Y	'			우
2.06	TorqDerRef (derivation part of torque reference) D-part of the speed controller's output in percent of the active motor nominal torque. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'			\bigcirc -
2.07	TorqAccCompRef (torque reference for acceleration compensation) Acceleration compensation output in percent of the active motor nominal torque. Int. Scaling: $100=\mathbf{1 \%}$ Type:	'	' ,		$\therefore 0$

Index	Signal / Parameter name		$\stackrel{\times}{\square}$	=0
2.08	TorqRef1 (torque reference 1) Relative torque reference value in percent of the active motor nominal torque after limiter for the external torque reference: - TorqMaxTref (20.09) - TorqMinTref (20.10) Int. Scaling: $100==1 \%$ Type:			$\therefore 0$
2.09	TorqRef2 (torque reference 2) Output value of the speed controller in percent of the active motor nominal torque after limiter: - TorqMaxSPC (20.07) - TorqMinSPC (20.08) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y			$\bigcirc 0$
2.10	TorqRef3 (torque reference 3) Relative torque reference value in percent of the active motor nominal torque after torque selector: - TorqSel (26.01) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{Y}			$\therefore 0$
2.11	TorqRef4 (torque reference 4) $=$ TorqRef3 (2.10) + LoadComp (26.02) in percent of the active motor nominal torque. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y			$\therefore 0$
2.12	Unused			
2.13	TorqRefUsed (used torque reference) Relative final torque reference value in percent of the active motor nominal torque after torque limiter: - TorqMax (20.05) - TorqMin (20.06) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			$\therefore 0$
2.14	TorqCorr (torque correction) Relative additional torque reference in percent of the active motor nominal torque: - TorqCorrect (26.15) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{Y}			$\therefore 0$
2.16	dv_dt (dv/dt) Acceleration/deceleration (speed reference change) at the output of the speed reference ramp. Int. Scaling: (2.29)/s Type: SI Volatile: Y			80
2.17	SpeedRefUsed (used speed reference) Used speed reference selected with: $-\quad$ Ref1Mux (11.02) and Ref1Sel (11.03) or $-\quad R e f 2 M u x$ (11.12) and Ref2Sel (11.06) Int. Scaling: (2.29) Type: \quad SI \quad Volatile: \mathbf{Y}			0
2.18	$\begin{array}{\|llll} \hline \text { SpeedRef4 (speed reference 4) } \\ =\text { SpeedRef3 (2.02) }+ \text { SpeedCorr (23.04). } \\ \text { Int. Scaling: }(2.29) & \text { Type: } & \text { SI } & \text { Volatile: } \mathbf{Y} \end{array}$			0
2.19	TorqMaxAll (torque maximum all) Relative calculated positive torque limit in percent of the active motor nominal torque. Calculated from maximum torque limit, field weakening and armature current limits: - TorqUsedMax (2.22) - FluxRefFIdWeak (3.24) and - M1CurLimBrdg1 (20.12) Int. Scaling: $100==1 \%$ Type:		${ }^{\prime}$	

Index	Signal / Parameter name	E	$\stackrel{\times}{\text { ® }}$		¢
2.20	TorqMinAll (torque minimum all) Relative calculated negative torque limit in percent of the active motor nominal torque. Calculated from minimum torque limit, field weakening and armature current limits: - TorqUsedMax (2.22) - FluxRefFldWeak (3.24) and - M1CurLimBrdg2 (20.13) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				$\bigcirc 0$
2.21	Unused				
2.22	TorqUsedMax (used torque maximum) Relative positive torque limit in percent of the active motor nominal torque. Selected with: - TorqUsedMaxSel (20.18) Connected to torque limiter after torque selector [TorqSel (21.01)] and load compensation [LoadComp (26.02)]. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}				$\bigcirc 0$
2.23	TorqUsedMin (used torque minimum) Relative negative torque limit in percent of the active motor nominal torque. Selected with: - TorqUsedMinSel (20.19) Connected to torque limiter after torque selector [TorqSel (21.01)] and load compensation [LoadComp (26.02)]. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				$\bigcirc 0$
2.24	TorqRefExt (external torque reference) Relative external torque reference value in percent of the active motor nominal torque after torque reference A selector: - TorqRefA (25.01) and - TorqRefA Sel (25.10) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				0
2.25	Unused				
2.26	TorqLimAct (actual used torque limit) Shows parameter number of the actual active torque limit: $\begin{array}{ll} 0=\mathbf{0} & \text { no limitation active } \\ 1=\mathbf{2 . 1 9} & \text { TorqMaxAll (2.19) is active, includes current limits and field weakening } \\ \mathbf{2}=\mathbf{2 . 2 0} & \text { TorqMinAll (2.20) is active, includes current limits and field weakening } \\ \mathbf{3}=\mathbf{2 . 2 2} & \text { TorqUsedMax (2.22) selected torque limit is active } \\ \mathbf{4}=\mathbf{2 . 2 3} & \text { TorqUsedMin (2.23) selected torque limit is active } \\ 5=\mathbf{2 0 . 0 7} & \text { TorqMaxSPC (20.07) speed controller limit is active } \\ 6=\mathbf{2 0 . 0 8} & \text { TorqMinSPC (20.08) speed controller limit is active } \\ \mathbf{7}=\mathbf{2 0 . 0 9} & \text { TorqMaxTref (20.09) external reference limit is active } \\ \mathbf{8 = \mathbf { 2 0 . 1 0 }} & \text { TorqMinTref (20.10) external reference limit is active } \\ \mathbf{9 = \mathbf { 2 0 . 2 2 }} & \text { TorqGenMax (20.22) regenerating limit is active } \\ \text { 10=2.08 } & \text { TorqRef1 (2.08) limits TorqRef2 (2.09), see also TorqSel (26.01) } \\ \text { Int. Scaling: } \mathbf{1 = = \mathbf { 1 }} \quad \text { Type: } & \text { C } \quad \text { Volatile: } \mathbf{Y} \end{array}$				0
2.27	Unused				
2.28	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{\sim}$		$=0$
2.29	SpeedScaleAct (actual used speed scaling) The value of SpeedScaleAct (2.29) equals 20.000 speed units. Currently used speed scaling in rpm for MotSel (8.09) = Motor1: - 20.000 speed units $==$ M1SpeedScale (50.01), in case M1SpeedScale (50.01) ≥ 10 - 20.000 speed units $==$ maximum absolute value of M1SpeedMin (20.01) and M1SpeedMax (20.02), in case M1SpeedScale (50.01) < 10 or mathematically: - If $(50.01) \geq 10$ then $20.000==(50.01)$ in rpm - If $(50.01)<10$ then $20.000==\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$ in rpm Currently used speed scaling in rpm for MotSel (8.09) = Motor2: - 20.000 speed units $==$ M2SpeedScale (49.22), in case M2SpeedScale (49.22) ≥ 10 - 20.000 speed units $==$ maximum absolute value of M2SpeedMin (49.19) and M2SpeedMax (49.20), in case M2SpeedScale (49.22) < 10 or mathematically: - If $(49.22) \geq 10$ then $20.000==(49.22)$ in rpm - If (49.22) < 10 then $20.000==\operatorname{Max}[\|(49.19)\|,\|(49.22)\|]$ in rpm Int. Scaling: $1==1 \mathrm{rpm}$ Type: SI Volatile: Y				0
2.30	SpeedRefExt1 (external speed reference 1) External speed reference 1 after reference 1 multiplexer: - Ref1Mux (11.02) Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}				EO
2.31	SpeedRefExt2 (external speed reference 2) External speed reference 2 after reference 2 multiplexer: - Ref2Mux (11.12) Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}				ㅇo
2.32	SpeedRampOut (speed ramp output) Speed reference after ramp Int. Scaling: (2.29) Type: SI Volatile: Y				
	Reference actual values				
3.01	DataLogStatus (status data logger) $0=$ Notlnit data logger not initialized 1 = Empty data logger is empty $2=$ Running data logger is running (activated) 3 = Triggered data logger is triggered but not filled jet 4 = Filled data logger is triggered and filled (data can be uploaded) Int. Scaling: $1==1$ Type: C Volatile: Y				ш
3.02	Unused				
3.03	SquareWave (square wave) Output signal of the square wave generator. Int. Scaling: 1==1 Type: SI Volatile: Y		'		ш
3.04	Unused				
3.05	Unused				
3.06	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{¢}$		此
3.07	PosCountLow (position counter low value) Position counter low word: - PosCountInitLo (50.08) - Unit depends on setting of PosCountMode (50.07): PulseEdges $\quad 1==1$ pulse edge Scaled $\quad 0==0^{\circ}$ and $65536==360^{\circ}$ Int. Scaling: $1==1 \quad$ Type: \quad Volatile: Y		' '		ш
3.08	PosCountHigh (position counter high value) Position counter high word: - PosCount/nitHi (50.09) - Unit depends on setting of PosCountMode (50.07): PulseEdges $\quad 1==65536$ pulse edges Scaled $\quad 1==1$ revolution Int. Scaling: $1=\mathbf{= 1} \quad$ Type: \quad SI Volatile: Y	'	' '		ш
3.09	PID Out (output PID controller) PID controller output. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y		' '		ш
3.10	Unused				
3.11	CurRef (current reference) Relative current reference in percent of M1NomCur (99.03) after scaling with field weakening. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		'		$\bigcirc 0$
3.12	CurRefUsed (used current reference) Relative current reference in percent of M1NomCur (99.03) after current limitation: - M1CurLimBrdg1 (20.12) - M2CurLimBrdg2 (20.13) - MaxCurLimSpeed (43.17 to 43.22) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				$\bigcirc 0$
3.13	ArmAlpha (armature α, firing angle) Firing angle (α). Int. Scaling: $1==1^{\circ} \quad$ Type: \quad Volatile: Y				0
3.14	Unused				
3.15	ReactCur (reactive current) Relative actual reactive motor current in percent of M1NomCur (99.03). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y				$\bigcirc{ }^{\circ}$
3.16	Unused				
3.17	ArmAlphaSI (12-pulse slave armature α, firing angle) Firing angle (α) of 12-pulse slave converter: - Valid in 12-pulse master only Int. Scaling: $1=1^{\circ} \quad$ Type: \quad Volatile: Y				ш
3.18	Unused				
3.19	Unused				
3.20	PLLOut (phase locked loop output) Mains voltage cycle (period time). Is used to check if the synchronization is working properly: $\begin{aligned} &-1 / 50 \mathrm{~Hz}=0.2 \mathrm{~s}=20.000 \mu \mathrm{~s} \\ &-\quad 1 / 60 \mathrm{~Hz}=0.167 \mathrm{~s}=16.667 \mu \mathrm{~s} \quad \\ & \text { Int. Scaling: } \mathbf{1}=\mathbf{=} \mathbf{1} \mu \mathrm{s} \quad \text { Type: } \quad \text { I Volatile: } \mathbf{Y} \end{aligned}$				手
3.21	Unused				

Index	Signal / Parameter name	¢		$=0$
3.22	CurCtrIIntegOut (integral part of current controller output) I-part of the current controller's output in percent of M1NomCur (99.03). Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}			\bigcirc - w
3.23	Unused			
3.24	FluxRefFldWeak (flux reference for field weakening) Relative flux reference at speeds above the field weakening point (base speed) in percent of the nominal flux. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y			$\bigcirc{ }^{\circ} \mathrm{w}$
3.25	VoltRef1 (EMF voltage reference 1) Selected relative EMF voltage reference in percent of M1NomVolt (99.02): - EMF RefSel (46.03) Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}		\bigcirc	$\therefore 0$
3.26	VoltRef2 (EMF voltage reference 2) Relative EMF voltage reference in percent of M1NomVolt (99.02) after ramp and limitation (input to EMF controller): - VoltRefSlope (46.06) - VoltPosLim (46.07) - VoltNegLim (46.08) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		-	\% w
3.27	FluxRefEMF (flux reference after EMF controller) Relative EMF flux reference in percent of the nominal flux after EMF controller. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			아
3.28	FluxRefSum (sum of flux reference) = FluxRefEMF (3.27) + FluxRefFIdWeak (3.24) in percent of the nominal flux. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			- ${ }^{\circ}$
3.29	Unused			
3.30	FldCurRefM1 (motor 1 field current reference) Relative motor 1 field current reference in percent of M1NomFldCur (99.11). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			- ${ }^{\circ}$
3.31	FldCurRefM2 (motor 2 field current reference) Relative motor 2 field current reference in percent of M2NomFldCur (49.05). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{Y}			- ${ }^{\circ}$
$\begin{aligned} & \dot{+} \\ & \text { 을 } \\ & \mathbf{0} \\ & \hline \mathbf{U} \end{aligned}$	Information			
4.01	FirmwareVer (firmware version) Name of the loaded firmware version. The format is: - -yyy with: - = single phase firmware for demo units and yyy = consecutively numbered version. Int. Scaling: Type: C Volatile: \mathbf{Y}			0
4.02	Unused			
4.03	ApplicName (name of application program) Name of the loaded application program. Int. Scaling: Type: C Volatile: Y			0

Index	Signal / Parameter name	E	$\stackrel{\times}{6}$	=0
4.04	ConvNomVolt (converter nominal voltage measurement circuit) Adjustment of voltage measuring channels (SDCS-PIN-4 or SDCS-PIN-51). Read from TypeCode (97.01) or set with S ConvScaleVolt (97.03): - Read from TypeCode (97.01) if S ConvScaleVolt (97.03) $=0$ - Read from S ConvScaleVolt (97.03) if S ConvScaleVolt (97.03) $\neq 0$ This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: $1==1$ V Type: I Volatile: Y			>0
4.05	ConvNomCur (converter nominal current measurement circuit) Adjustment of current measuring channels (SDCS-PIN-4 or SDCS-PIN-51). Read from TypeCode (97.01) or set with S ConvScaleCur (97.02): - Read from TypeCode (97.01) if S ConvScaleCur (97.02) $=0$ - Read from S ConvScaleCur (97.02) if S ConvScaleCur (97.02) $\neq 0$ This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: $1==1$ A Type: I Volatile: Y			$\varangle 0$
4.06	```Mot1FexType (motor 1 type of field exciter) Motor 1 field exciter type. Read from M1UsedFexType (99.12): \(0=\) NotUsed \(\quad\) no or foreign field exciter connected 1 = OnBoard integrated 1-Q field exciter (for sizes D1 - D4 only), default 2 = FEX-425-Int internal 1-Q 25 A field exciter (for size D5 only) 3 = DCF803-0035 external 1-Q 35 A field exciter used for field currents from 5 A to \(\mathbf{3 5}\) A (terminals X100.1 and X100.3) 4 = DCF803-0050 external 1-Q 50 A field exciter 5 = DCF804-0050 external 4-Q 50 A field exciter 6 = DCF803-0060 external 1-Q 60 A field exciter 7 = DCF804-0060 external 4-Q 60 A field exciter 8 = DCS800-S01 external 2-Q 3-phase field exciter 9 = DCS800-S02 external 4-Q 3-phase field exciter \(10=\) reserved to \(19=\) reserved \(20=\) FEX-4-Term5A external 1-Q 35 A field exciter used for field currents from 0.3 A to 5 A (terminals X100.2 and X100.3) 21 = reserved Int. Scaling: \(1=\mathbf{1}\) Type: C Volatile: \(\mathbf{Y}\)```			0
4.07	```Mot2FexType (motor 2 type of field exciter) Motor 2 field exciter type coding. Read from M2UsedFexType (49.07): \(0=\) NotUsed \(\quad\) no or foreign field exciter connected 1 = OnBoard integrated 1-Q field exciter (for sizes D1 - D4 only), default 2 = FEX-425-Int internal 1-Q 25 A field exciter (for size D5 only) 3 = DCF803-0035 external 1-Q 35 A field exciter used for field currents from 5 A to 35 A (terminals X100.1 and X100.3) 4 = DCF803-0050 external 1-Q 50 A field exciter 5 = DCF804-0050 external 4-Q 50 A field exciter \(6=\) DCF803-0060 external 1-Q 60 A field exciter 7 = DCF804-0060 external 4-Q 60 A field exciter 8 = DCS800-S01 external 2-Q 3-phase field exciter 9 = DCS800-S02 external 4-Q 3-phase field exciter \(10=\) reserved to \(19=\) reserved \(20=\) FEX-4-Term5A external 1-Q 35 A field exciter used for field currents from 0.3 A to 5 A (terminals X100.2 and X100.3) 21 = reserved Int. Scaling: \(1==1\) Type: C Volatile: \(\mathbf{Y}\)```			ш

Index	Signal / Parameter name		$\stackrel{\times}{\text { ® }}$	$\stackrel{8}{8}$		
4.08	Mot1FexSwVer (motor 1 firmware version of field exciter) Motor 1 field exciter firmware version. The format is: - yyy with: yyy = consecutively numbered version. This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: Type: C Volatile: Y					0
4.09	Mot2FexSwVer (motor 2 firmware version of field exciter) Motor 2 field exciter firmware version. The format is: - yyy with: $\mathbf{y y y}=$ consecutively numbered version. This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: Type: C Volatile: \mathbf{Y}					ш
4.10	Unused					
4.11	Com8SwVersion (firmware version of SDCS-COM-8) SDCS-COM-8 firmware version. The format is: - yyy with: $\mathbf{y y y}=$ consecutively numbered version. This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: Type: C Volatile: \mathbf{Y}					ш
4.12	ApplicVer (application version) Version of the loaded application program. The format is: - yyy with: yyy = consecutively numbered version. Int. Scaling: - Type: C Volatile: Y					0
4.13	DriveLibVer (drive library version) Version of the loaded function block library. The format is: $-\quad$ yyy with: $\mathbf{y y y}=$ consecutively numbered version. Int. Scaling: - Type: C Volatile: Y					0
4.14	ConvType (converter type) Recognized converter type. Read from TypeCode (97.01): $0=\text { None }$ when TypeCode (97.01) = None $1 \text { = D1 } \quad \text { D1 converter }$ $2 \text { = D2 } \quad \text { D2 converter }$ $3 \text { = D3 } \quad \text { D3 converter }$ $4=\text { D4 } \quad \text { D4 converter }$ $5=\text { D5 } \quad \text { D5 converter }$ $6=\text { D6 } \quad \text { D6 converter }$ $7 \text { = D7 } \quad \text { D7 converter }$ $8 \text { = ManualSet set by user, see S ConvScaleCur (97.02), S ConvScaleVolt (97.03), S }$ MaxBrdgTemp (97.04) or S BlockBridge2 (97.07) for e.g. rebuild kits This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: $1=\mathbf{1}$ Type:					0

Index	Signal / Parameter name	-	$\stackrel{\times}{\text { a }}$	¢ ${ }_{5}^{0}$	
4.15	QuadrantType (quadrant type of converter; 1 or 2 bridges) Recognized converter quadrant type. Read from TypeCode (97.01) or set with S BlockBrdg2 (97.07): - Read from TypeCode (97.01) if S BlockBrdg2 (97.07) = 0 - Read from S BlockBrdg2 (97.07) if S BlockBrdg2 (97.07) $=0$ This signal is set during initialization of the drive, new values are shown after the next power-up. $0=$ Auto operation mode is taken from TypeCode (97.01), default 1 = BlockBridge2 bridge 2 blocked (== 2-Q operation) 2 = RelBridge2 bridge 2 released (== 4-Q operation) Int. Scaling: 1 == 1 Type: Volatile: Y				0
4.16	ConvOvrCur (converter overcurrent [DC] level) Converter current tripping level This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: $1=1$ A Type: I Volatile: Y				40
4.17	MaxBridgeTemp (maximum bridge temperature) Maximum bridge temperature in degree centigrade. Read from TypeCode (97.01) or set with S MaxBrdgTemp (97.04): - Read from TypeCode (97.01) if S MaxBrdgTemp (97.04) $=0$ - Read from S MaxBrdgTemp (97.04) if S MaxBrdgTemp (97.04) $\neq 0$ This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: $1==1^{\circ} \mathrm{C}$ Type: I Volatile: \mathbf{Y}				

Index	Signal / Parameter name	.	$\stackrel{\times}{\text { ® }}$		
4.20					ш
4.21	CPU Load (load of processor) The calculating power of the processor is divided into two parts: - CPU Load (4.21) shows the load of firmware and - ApplLoad (4.22) shows the load of application. Neither should reach 100\%. Int. Scaling: $10=1 \%$ Type: I Volatile: Y				$\therefore 0$
4.22	AppILoad (load of application) The calculating power of the processor is divided into two parts: - CPU Load (4.21) shows the load of firmware and - ApplLoad (4.22) shows the load of application. Neither should reach 100%. Int. Scaling: $10=1 \%$ Type: \quad Volatile: Y				$\therefore 0$
4.23	MotNomTorque (motor nominal torque) Calculated nominal motor torque. Int. Scaling: $1==1 \mathrm{Nm}$ Type: I Volatile: Y				EO
4.24	ProgressSignal (progress signal for auto tunings) Progress signal for auto tunings used for Startup Assistants. Int. Scaling: 1 == 1% Type: Volatile: Y				$\bigcirc{ }^{\circ}$ 山

Index	Signal / Parameter name		$\stackrel{\times}{0}$	¢
10 0 0 0 0 0	Analog $/ / 0$			
5.01	AITacho Val (analog input for tacho) Measured actual voltage at analog tacho input. The integer scaling may differ, depending on the connected hardware and jumper setting. Note1: A value of 11 V equals 1.25 * M1OvrSpeed (30.16) Int. Scaling: $1000=1$ V Type: SI Volatile: Y			>0
5.02	Unused			
5.03	Al1 Val (analog input 1 value) Measured actual voltage at analog input 1 . The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: SI Volatile: Y			>0
5.04	Al2 Val (analog input 2 value) Measured actual voltage at analog input 2. The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: \quad SI Volatile: Y			>0
5.05	Al3 Val (analog input 3 value) Measured actual voltage at analog input 3. The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1 \mathrm{~V}$ Type: \quad SI Volatile: Y			$>$ w
5.06	Al4 Val (analog input 4 value) Measured actual voltage at analog input 4. The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: SI Volatile: Y			$>$ w
5.07	Al5 Val (analog input 5 value) Measured actual voltage at analog input 5 . The integer scaling may differ, depending on the connected hardware and DIP-switch settings. Available only with RAIO extension module see AIO ExtModule (98.06). Int. Scaling: $1000=1$ V Type: SI Volatile: \mathbf{Y}			$>\omega$
5.08	Al6 Val (analog input 6 value) Measured actual voltage at analog input 6 . The integer scaling may differ, depending on the connected hardware and DIP-switch settings. Available only with RAIO extension module see AIO ExtModule (98.06). Int. Scaling: $1000=1$ V Type: SI Volatile: \mathbf{Y}			$>\omega$
5.09	Unused			
5.10	Unused			
5.11	AO1 Val (analog output 1 value) Measured actual voltage at analog output 1. Int. Scaling: $1000==1$ V Type:			>0
5.12	AO2 Val (analog output 2 value) Measured actual voltage at analog output 2. Int. Scaling: $1000==1$ V Type: SI Volatile: Y		'	>0

Index	Signal / Parameter name		=
$\begin{aligned} & 0 \\ & \text { 을 } \\ & 0 \\ & \frac{0}{U} \end{aligned}$	Drive logic signals		
6.01	SystemTime (converter system time) Shows the time of the converter in minutes. Int. Scaling: $1=\mathbf{= 1} \mathbf{m i n}$ Type: I Volatile: \mathbf{Y}		E 0
6.02	Unused		
6.03			0

Index	Signal / Parameter name			-	
6.04	CurCtriStat2 ($2^{\text {nd }}$ current controller status) $2^{\text {nd }}$ current controller status word. The current controller will be blocked, if any for the bits is set (0 $==O K$):				0
6.05	SelBridge (selected bridge) Selected (current-conducting) bridge: $0=$ NoBridge no bridge selected 1 = Bridge1 bridge 1 sel. (motoring bridge) 2 = Bridge2 bridge 2 sel. (generating bridge) Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: Y				ш

Index	Signal / Parameter name				
6.06	FldCtrIAlarm (3-phase field controller alarm) 3-phase field controller alarm word. This packed binary signal includes alarm signals used in field exciter mode for load monitoring:				ш
6.07	Unused				
6.08	Unused				
6.09	CtrIStatMas (12-pulse master control status) 12-pulse master control status: - The control bits B3 to B6 (Reset, On, Run and Off2N) are only valid in the 12-pulse slave, if in the 12-pulse slave CommandSel (10.01) = 12P Link - Valid in 12-pulse master and slave				ш

Index	Signal / Parameter name	-	$\stackrel{\times}{6}$ ¢	
6.10	CtrIStatSla (12-pulse slave control status) 12-pulse slave control status:			ш
6.11	Unused			
6.12	Mot1FexStatus (motor 1 field exciter status) Motor 1 field exciter status: 0 = NotUsed 1 = OK 2 = ComFault 3 = FexFaulty 4 = FexNotReady 5 = FexUnderCur 6 = FexOverCur 7 = WrongSetting Int. Scaling: $1==1$ no field exciter connected field exciter and communication OK F516 M1FexCom [FaultWord1 (9.01) bit 15], communication faulty F529 M1FexNotOK [FaultWord2 (9.02) bit 12], field exciter selftest faulty F537 M1FexRdyLost [FaultWord3 (9.03) bit 4], field exciter not ready F541 M1FexLowCur [FaultWord3 (9.03) bit 8], field exciter undercurrent F515 M1FexOverCur [FaultWord1 (9.01) bit 14], field exciter overcurrent check setting of M1UsedFexType (99.12) and M2UsedFexType (49.07) Type: C Volatile: \mathbf{Y}			0

Index	Signal / Parameter name				
7.03	AuxCtrIWord2 (auxiliary control word 2, ACW2) Auxiliary control word 1:				0
7.04	UsedMCW (used main control word, UMCW) Internal used (selected) main control word. The selection is depending on the drives local/remote control and CommandSel (10.01). The bit functionality is the same as the in the MainCtrIWord (7.01). Not all functions are available in local control or local I/O mode. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: Y				0

Index	Signal / Parameter name		¢	5
7.05	DO CtrIWord (digital output control word, DOCW) The DO control word is used by Adaptive Program, application program or overriding control. To connect bits of the DO CtrIWord (7.05) with DO1 to DO8 use the parameters in group 14 (Digital outputs). DO9 to DO12 are fixed written to the extension I/O's and only available for Adaptive Program, application program or overriding control.			0
7.06	RFE CtrIWord (control word resonance frequency eliminator, RFECW) Resonance Frequency Eliminator control word			ш

Index	Signal / Parameter name	$\stackrel{\dot{c}}{\dot{E}} \stackrel{\times}{*}$	
$\begin{aligned} & \infty \\ & \text { 을 } \\ & \text { O} \\ & \text { U } \end{aligned}$	Status / limit words		
8.01			0

Index	Signal / Parameter name	\cdots	$\stackrel{\square}{0}$	5
8.06	DO StatWord (digital outputs status word, DOSW) Digital output word, shows the value of the digital outputs after inversion:			0
8.07	Unused			
8.08	DriveStat (drive status) Drive status: $0=$ OnInhibited drive is in OnInhibit state 1 = ChangeToOff drive is changing to Off 2 = Off drive is Off 3 = RdyOn drive is ready on 4 = RdyRun drive is ready run $5=$ Running drive is Running $6=$ Stopping drive is Stopping 7 = Off3 drive is in Off3 state (E-stop) 8 = Off2 drive is in Off2 state (Emergency Off or Coast Stop) $9=$ Tripped drive is Tripped Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{Y}			0

Index	Signal / Parameter name		
9.04			0
9.05	UserFaultWord (user defined fault word 1) User defined fault word. All names are defined by the user via application program:		ш

Index	Signal / Parameter name					$\stackrel{\sim}{6}$	0	0
9.06	AlarmWord1 (alarm word 1) Alarm word 1:				$1 .$..		
	Bit Alarm text	Alarm code and alarm level A101 1		Comment				
	B0 Off2Viadi			Off2 (Emergency Off / Coast Stop) pending via digital input, Off2 (10.08)				
	B1 Off3ViaDI	A102		Off3 (E-stop) pending via digital input, E Stop (10.09)				
	B2 DCBreakAck	A103		selected motor: DC-breaker acknowledge missing, DCBreakAck (10.23)				
	B3 ConvOverTemp	A104	2	converter overtemperature, shutdown temperature see MaxBridgeTemp (4.17). The converter overtemperature alarm will already appear at approximately $5^{\circ} \mathrm{C}$ below the shutdown temperature.				
	B4 DynBrakeAck	A105		selected motor: dynamic braking acknowledge is still pending, DynBrakeAck (10.22)				
	B5 M1OverTemp	A106	2	motor 1 measured overtemperature, M1AlarmLimTemp (31.06)				
	B6 M1OverLoad	A107	2	motor 1 calculated overload (thermal model), M1AlarmLimLoad (31.03)				
	B7 reserved	A108	4	no action				
	B8 M2OverTemp	A109	2	motor 2 measured overtemperature, M2AlarmLimTemp (49.36)				
	B9 M2OverLoad	A110	2	motor 2 calculated overload (thermal model), M2AlarmLimLoad (49.33)				
	B10 MainsLowVolt	A111		mains low (under-) voltage, PwrLossTrip (30.21), UNetMin1 (30.22), UNetMin2 (30.23)				
	B11 P2PandMFCom	A112	4	Drive-to-drive and master follower communication loss, ComLossCtrl (30.28), MailBoxCycle1 (94.13), MailBoxCycle2 (94.19), MailBoxCycle3 (94.25), MailBoxCycle4 (94.31)				
	B12 COM8Com	A113	4	SDCS-COM-8 communication loss, ChOComLossCtrl (70.05), Ch0TimeOut (70.04), Ch2ComLossCtrl (70.15), Ch2TimeOut (70.14)				
	B13 ArmCurDev	A114	3	armature current deviation				
	B14 TachoRange	A115		Overflow of AITacho input or M1OvrSpeed (30.16) respectively M2OvrSpeed (49.21) have been changed				
	B15 reserved Int. Scaling: 1 == 1	A116 Type:	i	no action Volatile: Y				

Index	Signal / Parameter name			=
9.08	AlarmWord3 (alarm word 3) Alarm word 3:			0
9.09	UserAlarmWord (user defined alarm word 1) User defined alarm word. All names are defined by the user via application program:			ш

Index	Signal / Parameter name	.	4	=
9.10	SysFaultWord (system fault word) Operating system faults from SDCS-COM-8 board: Bit Fault text Fault code F B0 Factory macro parameter file error B1 User macro parameter file error B2 Non Volatile operating system error B3 File error in FLASH B4 Internal time level T2 overflow ($100 \mu \mathrm{~s}$) B5 Internal time level T3 overflow (1 ms) B6 Internal time level T4 overflow (50 ms) B7 Internal time level T5 overflow (1 s) B8 State overflow B9 Application window ending overflow B10 Application program overflow B11 Illegal instruction B12 Register stack overflow B13 System stack overflow B14 System stack underflow B15 reserved Int. Scaling: 1 == 1 Type:			ш

Index	Signal / Parameter name	E	-	=0	
9.11	Diagnosis (diagnosis) Displays diagnostics messages: $0=\quad \text { no message }$ Firmware: $\begin{array}{ll} 1= & \text { reserved } \\ 2= & \text { parameter flash image too small for all parameters } \\ 3-5= & \text { reserved } \\ 6= & \text { wrong type code } \\ 7= & \text { an un-initialized interrupted has occurred } \\ 8,9= & \text { reserved } \\ 10= & \text { wrong parameter value } \end{array}$ Autotuning: $11=\quad$ autotuning aborted by fault or removing the Run command [UsedMCW (7.04) bit 3] $12=\quad$ autotuning timeout, RUN command [UsedMCW (7.04) bit 3] is not set in time $13=$ motor is still turning, no speed zero indication $14=$ field current not zero $15=$ armature current not zero $16=\quad$ armature voltage measurement circuit open (e.g. not connected) respectively interrupted armature circuit and/or armature voltage measurement circuit wrongly connected $18=\quad$ no load connected to armature circuit $19=\quad$ invalid nominal armature current setting; armature current M1MotNomCur (99.03) is set to zero $20=\quad$ field current does not decrease when the excitation is switched off $21=$ field current actual doesn't reach field current reference; no detection of field resistance; field circuit open (e.g. not connected) respectively interrupted $22=$ no writing of control parameters of speed controller $23=\quad$ tacho adjustment faulty or not OK 24-49 reserved Hardware: $50=$ parameter FLASH faulty (erase) $51=\quad$ parameter FLASH faulty (program) 52-69 reserved A132 ParConflict (alarm parameter setting conflict): $70=$ reserved $71=\quad$ flux linearization parameters not consistent $72=\quad$ reserved $73=\quad$ parameter overflow 74-79 reserved		¢		0

Index	Signal / Parameter name		-		¢
	Thyristor diagnosis: $30000=$ possibly trigger pulse channels are mixed up $31 \times 00=\mathrm{V} 1$ or V11 not conducting $32 \times 00=$ V2 or V12 not conducting $33 \times 00=\mathrm{V} 3$ or V13 not conducting $34 \times 00=\mathrm{V} 4$ or V14 not conducting $35 \times 00=\mathrm{V} 5$ or V15 not conducting $36 x 00=$ V6 or V16 not conducting $x=0$: only a single thyristor is not conducting (e.g. 32000 means V2 respectively V12 is not conducting) $x=1 \ldots 6$: additionally a second thyristor is no conducting (e.g. 32500 means V2 and V5 respectively V12 and V15 are not conducting) $3001 \mathrm{y}=\mathrm{V} 21$ not conducting 3002y = V22 not conducting $3003 y=\mathrm{V} 23$ not conducting $3004 y=$ V24 not conducting $3005 \mathrm{y}=\mathrm{V} 25$ not conducting $3006 y=$ V26 not conducting $\mathrm{y}=0$: only a single thyristor is not conducting (e.g. 30020 means V22 is not conducting) $y=1 \ldots 6$: additionally a second thyristor is no conducting (e.g. 30025 means V22 and V25 are not conducting) A124 SpeedScale (alarm speed scaling): $40000 \ldots 49999=$ the parameter with the speed scaling conflict can be identified by means of the last 4 digits F549 ParComp (fault parameter compatibility conflict): 50000 ... 59999 = the parameter with the compatibility conflict can be identified by means of the last 4 digits F545 AppILoadFail (ControlBuilder DCS800 application programming): $64110=$ task not configured $64112=$ attempt to run an illegal copy of a protected program $64113=$ retain data invalid caused by SDCS-CON-4 hardware problem $64125=5 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64126=20 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64127=100 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64128=500 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) Int. Scaling: $\quad 1==1$ Type: \quad Volatile: Y				
9.12	LastFault (last fault) Displays the last fault: F<Fault code> <FaultName> (e.g. F2 ArmOverCur) Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: Y				0
9.13	$2^{\text {nd }}$ LastFault (2 ${ }^{\text {nd }}$ last fault) Displays the $2^{\text {nd }}$ last fault: F<Fault code> <FaultName> (e.g. F2 ArmOverCur) Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: Y				0
9.14	$3^{\text {rd }}$ LastFault ($\mathbf{3}^{\text {rd }}$ last fault) Displays the $3^{\text {rd }}$ last fault: F<Fault code> <FaultName> (e.g. F2 ArmOverCur) Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{Y}				0

Index	Signal / Parameter name		=0
$\begin{aligned} & \text { 으 } \\ & \text { 을 } \\ & \text { O} \\ & \text { ㄴ } \end{aligned}$	Start / stop select		
10.01	CommandSel (command selector) UsedMCW (7.04) selector: $0=$ Local I/O Drive is controlled via local I/O. Reset (10.03) = DI6; UsedMCW (7.04) bit 7, default OnOff1 (10.15) = DI7; UsedMCW (7.04) bit 0, default and StartStop (10.16) = DI8; UsedMCW (7.04) bit 3, default 1 = MainCtrIWord drive is controlled via MainCtrIWord (7.01) $2=$ Key \quad Automatic switchover from MainCtrIWord to Local I/O in case of F528 FieldBusCom [FaultWord2 (9.02) bit 11]. It is still possible to control the drive via local I/O. OnOff1 (10.15) = DI7; UsedMCW (7.04) bit 0, default and StartStop (10.16) = DI8; UsedMCW (7.04) bit 3, default. The used speed reference is set by means of FixedSpeed1 (23.02). 3 = 12PLink \quad Drive is controlled from 12-pulse master (OnOff1, StartStop and Reset). 4 = FexLink \quad Drive is controlled from field exciter master (OnOff1, StartStop and Reset). Only available when OperModeSel (43.01) = FieldExciter. Note1: Local control mode has higher priority than the selection made with CommandSel (10.01). Note2: The commands Off2 (10.08), E Stop (10.09) and Reset (10.03) are always active (in case they are assigned) regardless of CommandSel (10.01) setting. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: N		0
10.02	Direction (direction of rotation) Binary signal for Direction, AuxCtrIWord2 (7.03) bit 8. Direction (10.02) allows to change the direction of rotation:		0

Index	Signal / Parameter name	-	¢
10.03	```Reset (reset command) Binary signal for Reset, UsedMCW (7.04) bit 7: \(0=\) NotUsed 1 = DI1 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) \(2=\) DI2 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 3 = DI3 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 4 = DI4 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) \(5=\) DI5 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) \(6=\) DI6 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\), default 7 = DI7 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) \(8=\) DI8 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) \(9=\) DI9 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\), only available with digital extension board 10 = DI10 \(11=\) DI11 \(12=\) MCW Bit11 13 = MCW Bit12 14 = MCW Bit13 15 = MCW Bit14 16 = MCW Bit15 17 = ACW Bit12 18 = ACW Bit13 19 = ACW Bit14 \(20=\) ACW Bit15 Int. Scaling: \(1==1\)```		0
10.04	SyncCommand (synchronization command for position counter) Binary signal for Synchronization. At the synchronization event [AuxCtrIWord (7.02) bit 9 SyncCommand] the position counter is initialized by following values: - PosCountInitLo (50.08) is written into PosCountLow (3.07) and - PosCountInitHi (50.09) is written into PosCountHigh (3.08). At the same time AuxStatWord (8.02) bit 5 SyncRdy is set to 1. The synchronization can be inhibited by setting AuxCtrlWord (7.02) bit 10 SyncDisable to 1. The synchronization event is selected by: $0=$ NotUsed default 1 = DI7+ rising edge $(0 \rightarrow 1)$ of DI7 $2=$ DI7Hi\&Z \quad DI7 $=1$ and rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder $3=$ DI7Hi\&Z Fwd DI7 = 1 and rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder, motor rotating forward $4=$ DI7Hi\&Z Rev \quad DI7 $=1$ and rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder, motor $5=$ DI7- \quad falling edge $(1 \rightarrow 0)$ of DI7 $6=$ DI7Lo\&Z \quad DI7 $=0$ and rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder 7 = DI7Lo\&Z Fwd DI7 = 0 and rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder, motor rotating forward $8=$ DI7Lo\&Z Rev DI7 $=0$ and rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder, motor rotating reverse $9=\mathbf{Z} \quad$ rising edge $(0 \rightarrow 1)$ of zero channel pulse encoder $10=$ SyncCommand rising edge $(0 \rightarrow 1)$ of AuxCtrIWord (7.02) bit 9 Note1: Forward rotation means that the encoders A pulses are before the B pulses. Reverse rotation means that the encoders B pulses are before the A pulses. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		ш
10.05	Unused		

Index	Signal / Parameter name	\cdots	
10.08	Off2 (off2 command, electrical disconnect) Binary signal for Off2 (Emergency Off / Coast Stop), UsedMCW (7.04) bit 1. For fastest reaction use fast digital inputs DI7 or DI8: $\begin{aligned} & 0=\text { NotUsed } \\ & 1=\text { DI1 } \\ & 2=\text { DI2 } \\ & 3=\text { DI3 } \\ & 4=\text { DI4 } \\ & 5=\text { DI5 } \\ & 6=\text { DI6 } \\ & 7=\text { DI7 } \\ & 8=\text { DI8 } \\ & 9=\text { DI9 } \\ & 10=\text { DI10 } \\ & 11=\text { DI11 } \end{aligned}$ $12=$ MCW Bit11 13 = MCW Bit12 14 = MCW Bit13 15 = MCW Bit14 16 = MCW Bit15 17 = ACW Bit12 18 = ACW Bit13 19 = ACW Bit14 20 = ACW Bit15 Int. Scaling: 1 == 1 $1=$ no Off2, $0=\mathbf{O f f} 2$ active $1=$ no Off2, $0=\mathbf{O f f 2}$ active $1=$ no Off2, $0=\mathbf{O f f} 2$ active $1=$ no Off2, $0=\mathbf{O f f 2}$ active, default $1=$ no Off2, $0=\mathbf{O f f 2}$ active $1=$ no Off2, $0=\mathbf{O f f 2}$ active $1=$ no Off2, $0=\mathbf{O f f} 2$ active $1=$ no Off2, $0=\mathbf{O f f} 2$ active $1=$ no Off2, $0=\mathbf{O f f} 2$ active, only available with digital extension board $1=$ no Off2, $0=\mathbf{O f f 2}$ active, only available with digital extension board $1=$ no Off2, $0=\mathbf{O f f 2}$ active, only available with digital extension board $1=$ no Off2, $0=\mathbf{O f f 2}$ active, MainCtrIWord (7.01) bit 11 $1=$ no Off2, $0=\mathbf{O f f} 2$ active, MainCtrlWord (7.01) bit 12 $1=$ no Off2, $0=$ Off2 active, MainCtrIWord (7.01) bit 13 $1=$ no $\mathbf{O f f 2}, 0=\mathbf{O f f} 2$ active, MainCtrlWord (7.01) bit 14 $1=$ no Off2, $0=$ Off2 active, MainCtrIWord (7.01) bit 15 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, AuxCtrIWord (7.02) bit 12 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, AuxCtrIWord (7.02) bit 13 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, AuxCtr/Word (7.02) bit 14 $1=$ no Off2, $0=$ Off2 active, AuxCtrIWord (7.02) bit 15 Type: c Volatile: N		0
10.09	E Stop (emergency stop command) Binary signal for E Stop, UsedMCW (7.04) bit 2: $\begin{aligned} & 0=\text { NotUsed } \\ & 1=\text { DI1 } \\ & 2=\text { DI2 } \\ & 3=\text { DI3 } \\ & 4=\text { DI4 } \\ & 5=\text { DI5 } \\ & 6=\text { DI6 } \\ & 7=\text { DI7 } \\ & 8=\text { DI8 } \\ & 9=\text { DI9 } \\ & 10=\text { DI10 } \\ & 11=\text { DI11 } \end{aligned}$ $12 \text { = MCW Bit11 }$ $13 \text { = MCW Bit12 }$ $14 \text { = MCW Bit13 }$ $15 \text { = MCW Bit14 }$ $16 \text { = MCW Bit15 }$ $17 \text { = ACW Bit12 }$ $18 \text { = ACW Bit13 }$ 19 = ACW Bit14 $20=$ ACW Bit15 Int. Scaling: $1==1$ $1=$ no E Stop, $0=E$ Stop active $1=$ no E Stop, $0=E$ Stop active, default $1=$ no E Stop, $0=E$ Stop active $1=$ no E Stop, $0=E$ Stop active $1=$ no E Stop, $0=E$ Stop active $1=$ no E Stop, $0=E$ Stop active, only available with digital extension board $1=$ no E Stop, $0=E$ Stop active, only available with digital extension board $1=$ no E Stop, $0=E$ Stop active, only available with digital extension board $1=$ no E Stop, $0=$ E Stop active, MainCtrIWord (7.01) bit 11 $1=$ no E Stop, $0=$ E Stop active, MainCtrIWord (7.01) bit 12 $1=$ no E Stop, $0=E$ Stop active, MainCtrIWord (7.01) bit 13 $1=$ no E Stop, $0=$ E Stop active, MainCtrIWord (7.01) bit 14 $1=$ no E Stop, $0=E$ Stop active, MainCtrIWord (7.01) bit 15 $1=$ no E Stop, $0=$ E Stop active, AuxCtrlWord (7.02) bit 12 $1=$ no E Stop, $0=$ E Stop active, AuxCtrIWord (7.02) bit 13 $1=$ no E Stop, $0=E$ Stop active, AuxCtrIWord (7.02) bit 14 $1=$ no E Stop, $0=E$ Stop active, AuxCtrIWord (7.02) bit 15		0

Signal and parameter list

Index	Signal / Parameter name		¢
10.16	```StartStop (start/stop command) Binary signal for StartStop, UsedMCW (7.04) bit 3: \(0=\) NotUsed \(1=\) DI1 \(\quad\) Start by rising edge \((0 \rightarrow 1), 0=\) Stop 2 = DI2 Start by rising edge \((0 \rightarrow 1), 0=\) Stop 3 = DI3 Start by rising edge \((0 \rightarrow 1), 0=\) Stop 4 = DI4 Start by rising edge \((0 \rightarrow 1), 0=\) Stop 5 = DI5 Start by rising edge \((0 \rightarrow 1), 0=\) Stop 6 = DI6 Start by rising edge \((0 \rightarrow 1), 0=\) Stop 7 = DI7 Start by rising edge \((0 \rightarrow 1), 0=\) Stop 8 = DI8 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, default \(9=\) DI9 \(\quad\) Start by rising edge \((0 \rightarrow 1), 0=\) Stop, only available with digital extension board \(10=\) DI10 \(10=\) Dl10 \(\quad\) Start by rising edge \((0 \rightarrow 1), 0=\) Stop, only available with digital extension \(11=\) DI11 \(\quad\) Start by rising edge \((0 \rightarrow 1), 0=\) Stop, only available with digital extension \(12=\) MCW Bit11 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, MainCtrIWord (7.01) bit 11 13 = MCW Bit12 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, MainCtrlWord (7.01) bit 12 14 = MCW Bit13 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, MainCtrIWord (7.01) bit 13 \(15=\) MCW Bit14 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, MainCtrIWord (7.01) bit 14 \(16=\) MCW Bit15 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, MainCtrIWord (7.01) bit 15 17 = ACW Bit12 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, AuxCtrIWord (7.02) bit 12 18 = ACW Bit13 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, AuxCtrIWord (7.02) bit 13 19 = ACW Bit14 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, AuxCtrIWord (7.02) bit 14 \(20=\) ACW Bit15 Start by rising edge \((0 \rightarrow 1), 0=\) Stop, AuxCtrIWord (7.02) bit 15 21 = DI7DI8 = DI7DI8. Int. Scaling: 1 == 1None```		0

Index	Signal / Parameter name		5
10.20	ConvFanAck (converter fan acknowledge) The drive trips with F527 ConvFanAck [FaultWord2 (9.02) bit 10] if a digital input for the converter fan is selected and the acknowledge is missing for 10 seconds. As soon as the acknowledge is missing A104 ConvOverTemp [AlarmWord1 (9.06) bit 3] is set. The alarm is reset automatically if the converter fan acknowledge is coming back before the 10 seconds are elapsed: ```\(0=\) NotUsed no reaction 1 = DI1 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge, default 2 = DI2 1 = acknowledge OK, \(0=\) no acknowledge 3 = DI3 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 4 = DI4 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 5 = DI5 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 6 = DI6 \(\quad 1\) = acknowledge OK, \(0=\) no acknowledge 7 = DI7 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 8 = DI8 \(\quad 1\) = acknowledge OK, \(0=\) no acknowledge \(9=\) DI9 \(\quad 1=\) acknowledge \(\mathrm{OK}, 0=\) no acknowledge, only available with digital extension board \(10=\) Dl10 \(\quad 1=\) acknowledge \(\mathrm{OK}, 0=\) no acknowledge, only available with digital extension board 1 = acknowledge OK, \(0=\) no acknowledge, only available with digital extension board Int. Scaling: \(1=\mathbf{1}\) Type: C Volatile: N```		0
10.21	MainContAck (main contactor acknowledge) The drive trips with F524 MainContAck [FaultWord2 (9.02) bit 7] if a digital input for the main contactor is selected and the acknowledge is missing for 10 seconds: Selection see ConvFanAck (10.20). Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: N		0
10.22	DynBrakeAck (dynamic braking acknowledge) The drive sets A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] if a digital input for dynamic braking is selected and the acknowledge (dynamic braking active) is still present when On [UsedMCW (7.04) bit 3] is set: Selection see ConvFanAck (10.20). A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] should prevent the drive to be started while dynamic braking is active. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		0
10.23	DC BreakAck (DC breaker acknowledge) The drive sets A103 DCBreakAck [AlarmWord1 (9.06) bit 2] if a digital input for the DC-breaker is selected and the acknowledge is missing for 10 seconds: Selection see ConvFanAck (10.20). The motor will coast if A103 DCBreakAck [AlarmWord1 (9.06) bit 2] is set. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}		ш
10.24	Unused		
10.25	DIIInvert (invert digital input 1) Inversion selection for digital input 1: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1$ Type:		0
10.26	DI2Invert (invert digital input 2) Inversion selection for digital input 2: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		0

Index	Signal / Parameter name		
	Speed reference input		
11.01	Unused		
11.02	Ref1Mux (speed reference 1 selector/multiplexer) Speed reference 1 selector: 0 = Open 1 = Close 2 = DI1 3 = DI2 4 = DI3 $5=$ DI4 6 = DI5 7 = DI6 8 = DI7 9 = DI8 $10=$ DI9 11= DI10 $12=$ DI11 13 = MCW Bit11 14 = MCW Bit12 $15=$ MCW Bit13 $16=$ MCW Bit14 17 = MCW Bit15 $18=$ ACW Bit12 19 = ACW Bit13 $20=$ ACW Bit14 21 = ACW Bit15 switch for speed ref. 1 is fixed open switch for speed ref 1 is fixed closed, default $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; only available with digital extension board $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; only available with digital extension board $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; only available with digital extension board $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrlWord (7.01) bit 11 0; MainCtrlWord (7.01) bit 12 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrlWord (7.01) bit 13 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; MainCtrlWord (7.01) bit 14 0; MainCtrlWord (7.01) bit 15 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; AuxCtrIWord (7.02) bit 12 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; AuxCtrIWord (7.02) bit 13 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; AuxCtrlWord (7.02) bit 14 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$		

Index	Signal / Parameter name	E	$\stackrel{*}{\circ}$		¢
11.03	```Ref1Sel (speed reference 1 input signal) Speed reference 1 value: \(0=\) SpeedRef2301 SpeedRef (23.01), default 1 = AuxSpeedRef AuxSpeedRef (23.13) 2 = Al1 \(\quad\) analog input Al1 3 = Al2 \(\quad\) analog input Al2 \(4=\) Al3 \(\quad\) analog input Al3 \(5=\) Al4 \(\quad\) analog input AI4 \(6=\) Al5 \(\quad\) analog input AI5 7 = AI6 \(\quad\) analog input AI6 8 = FixedSpeed1 FixedSpeed1 (23.02) 9 = FixedSpeed2 FixedSpeed2 (23.03) \(10=\) MotPot \(\quad\) motor pot controlled by MotPotUp (11.13), MotPotDown (11.14) and MotPotMin (11.15) \(11=\) AuxRef-Al1 \(\quad\) AuxSpeedRef (23.13) minus value of Al1 \(12=\) reserved \(13=\) MinAI2AI4 minimum of AI2 and AI4 \(14=\) MaxAl2AI4 maximum of AI2 and AI4 \(15=\) Al1Direct+ \(\quad\) Fast speed reference input using analog input Al1. SpeedRefExt1 (2.30) is written directly onto the speed error summation point and disconnected from the speed ramp. Thus the speed ramp is bypassed. \(16=\) Al2Direct \(+\quad\) Fast speed reference input using analog input Al2. SpeedRefExt1 (2.30) is written directly onto the speed error summation point and disconnected from the speed ramp. Thus the speed ramp is bypassed.None```	¢			0
11.04	Unused				
11.05	Unused				
11.06	```Ref2Sel (speed reference 2 input signal) Speed reference 2 value: 0 = SpeedRef2301 SpeedRef (23.01), default 1 = AuxSpeedRef AuxSpeedRef (23.13) 2 = Al1 \(\quad\) analog input Al1 \(3=\) Al2 \(\quad\) analog input Al2 \(4=\) Al3 \(\quad\) analog input Al3 \(5=\) Al4 \(\quad\) analog input AI4 \(6=\) Al5 \(\quad\) analog input AI5 7 = AI6 \(\quad\) analog input AI6 8 = FixedSpeed1 FixedSpeed1 (23.02) 9 = FixedSpeed2 FixedSpeed2 (23.03) \(10=\) MotPot motor pot controlled by MotPotUp (11.13), MotPotDown (11.14) and MotPotMin (11.15) \(11=\) Al2-Al3 \(\quad\) Al2 minus Al3 \(12=\) Al2+AI3 \(\quad\) Al2 plus AI3 \(13=\) Al1*AI2 \(\quad\) Al1 multiplied with Al2 \(14=\) Al2*AI3 \(\quad\) Al2 multiplied with Al3 \(15=\) MinAI2AI4 minimum of AI2 and AI4 \(16=\) MaxAl2AI4 maximum of AI2 and AI4 Int. Scaling: \(1=1 \quad\) Type: \(\quad\) C Volatile: \(\mathbf{N}\)```				ш
11.07	Unused				
11.08	Unused				
11.09	Unused				
11.10	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{\square}$	0	
11.13	MotPotUp (motor pot up) With the motor pot up function the motor speed is increased by means of the selected binary input. The acceleration is limited by AccTime1 (22.01) until Ref1Max (11.05) respectively Ref2Max (11.08) is reached. MotPotDown (11.14) overrides MotPotUp (11.13): Note1: The speed reference is selected by means of Ref1Sel (11.03) = MotPot respectively Ref2Sel (11.06) = MotPot. Int. Scaling: 1 == 1				0

Index	Signal / Parameter name		*	\pm	
11.14	MotPotDown (motor pot down) With the motor pot down function the motor speed is decreased by means of the selected binary input. The deceleration is limited by DecTime1 (22.02) until zero speed respectively MotPotMin (11.15) is reached. MotPotDown (11.14) overrides MotPotUp (11.13): Note1: The speed reference is selected by means of Ref1Sel (11.03) = MotPot respectively Ref2Sel (11.06) = MotPot. Int. Scaling: 1 == 1 Type: C Volatile: \mathbf{N}		?		0

Index	Signal / Parameter name				
11.15	MotPotMin (motor pot minimum) The motor pot minimum function releases the minimum speed level. The minimum speed level is defined by FixedSpeed1 (23.02). When the drive is started the motor accelerates to FixedSpeed1 (23.02). It is not possible to set the speed below FixedSpeed1 (23.02) by means of the motor pot function: ```\(0=\) NotUsed default 1 = DII \(1=\) released, \(0=\) blocked \(2=\) DI2 \(1=\) released, \(0=\) blocked 3 = DI3 \(1=\) released, \(0=\) blocked 4 = DI4 \(1=\) released, \(0=\) blocked 5 = DI5 \(1=\) released, \(0=\) blocked 6 = DI6 \(1=\) released, \(0=\) blocked 7 = DI7 \(1=\) released, \(0=\) blocked 8 = DI8 \(1=\) released, \(0=\) blocked 9 = DI9 \(1=\) released, \(0=\) blocked, only available with digital extension board \(10=\) Dl10 \(1=\) released, \(0=\) blocked, only available with digital extension board 11 = DI11 \(1=\) released, \(0=\) blocked, only available with digital extension board \(12=\) MCW Bit11 \(1=\) released, \(0=\) blocked, MainCtrIWord (7.01) bit 11 13 = MCW Bit12 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 12 14 = MCW Bit13 \(1=\) released, \(0=\) blocked, MainCtrIWord (7.01) bit 13 \(15=\) MCW Bit14 \(1=\) released, \(0=\) blocked, MainCtrIWord (7.01) bit 14 16 = MCW Bit15 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 15 17 = ACW Bit12 \(1=\) released, \(0=\) blocked, AuxCtrIWord (7.02) bit 12 18 = ACW Bit13 \(1=\) released, \(0=\) blocked, AuxCtrlWord (7.02) bit 13 19 = ACW Bit14 \(1=\) released, \(0=\) blocked, AuxCtrlWord (7.02) bit 14 20 = ACW Bit15 \(1=\) released, \(0=\) blocked, AuxCtrlWord (7.02) bit 15 Int. Scaling: 1 == 1 Type: C Volatile: N```				0
$\begin{aligned} & \text { N } \\ & \text { 을 } \\ & \frac{0}{0} \\ & \mathbf{U} \end{aligned}$	Constant speeds				
12.01	unused				
12.02	ConstSpeed1 (constant speed 1) Defines constant speed 1 in rpm. The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: \mathbf{N}	$\begin{array}{ll} 8 & 8 \\ 0 \\ \hline \end{array}$			
12.03	ConstSpeed2 (constant speed 2) Defines constant speed 2 in rpm. The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: N			틴	

Index	Signal / Parameter name		\times		
12.04	ConstSpeed3 (constant speed 3) Defines constant speed 3 in rpm. The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Int. Scaling: (2.29) Type: Volatile: N				в
12.05	ConstSpeed4 (constant speed 4) Defines constant speed 4 in rpm. The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Int. Scaling: (2.29) Type: SI Volatile: \mathbf{N}				-
\cdots	Analog inputs				
13.01	Al1HighVal (analog input 1 high value) $+100 \%$ of the input signal connected to analog input 1 is scaled to the voltage in Al1HighVal (13.01). Example: - In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of analog input 1 should equal $\pm 250 \%$ of TorqRefExt (2.24), set: TorqRefA Sel (25.10) = Al1 ConvModeAl1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$, Al1HighVal (13.01) $=4000 \mathrm{mV}$ and Al1LowVal (13.02) $=-4000 \mathrm{mV}$ Note1: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{1 m V}$ Type: I Volatile: N				
13.02	Al1LowVal (analog input 1 low value) -100% of the input signal connected to analog input 1 is scaled to the voltage in Al1LowVal (13.02). Note1: Al1LowVal (13.02) is only valid if ConvModeAl1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$. Note2: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{= 1 m V}$ Type: SI Volatile: N				
13.03	ConvModeAl1 (conversion mode analog input 1) Analog input 1 signal offset. The distinction between voltage and current is done via jumpers on the SDCS-CON-4 or SDCS-IOB-3 board: $0= \pm 10 \mathrm{~V} \mathrm{Bi} \quad-10 \mathrm{~V}$ to $10 \mathrm{~V} /-20 \mathrm{~mA}$ to 20 mA bipolar input, default $1=\mathbf{0 V}-10 \mathrm{~V}$ Uni $\quad 0 \mathrm{~V}$ to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA unipolar input $2=\mathbf{2 V}-10 \mathrm{~V}$ Uni $\quad 2 \mathrm{~V}$ to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA unipolar input $3=5 \mathrm{~V}$ Offset $\quad 5 \mathrm{~V} / 10 \mathrm{~mA}$ offset in the range 0 V to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $4=6 \mathrm{~V}$ Offset $\quad 6 \mathrm{~V} / 12 \mathrm{~mA}$ offset in the range 2 V to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}		-		0

Index	Signal / Parameter name		知	¢	O
13.04	FilterAl1 (filter time analog input 1) Analog input 1 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1==1 \mathrm{~ms}$ Type: \quad Volatile: N		앙	$\stackrel{\square}{8}$	0
13.05	Al2HighVal (analog input 2 high value) $+100 \%$ of the input signal connected to analog input 2 is scaled to the voltage in Al2HighVal (13.05). Note1: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{= 1 \mathrm { mV }}$ Type: I Volatile: N				0
13.06	Al2LowVal (analog input 2 low value) -100% of the input signal connected to analog input 2 is scaled to the voltage in Al2LowVal (13.06). Note1: Al2LowVal (13.06) is only valid if ConvModeAl2 (13.07) $= \pm \mathbf{1 0 V}$ Bi. Note2: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=1 \mathrm{mV}$ Type: \quad SI Volatile: N			\geqslant	0
13.07	ConvModeAl2 (conversion mode analog input 2) Analog input 2 signal offset. The distinction between voltage and current is done via jumpers on the SDCS-CON-4 or SDCS-IOB-3 board:				0
13.08	FilterAl2 (filter time analog input 2) Analog input 2 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: N			¢	
13.09	Al3HighVal (analog input 3 high value) $+100 \%$ of the input signal connected to analog input 3 is scaled to the voltage in Al3HighVal (13.09). Note1: To use current please set the jumper (SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{= 1 m V}$ Type: I Volatile: N				-
13.10	AI3LowVal (analog input 3 low value) -100% of the input signal connected to analog input 3 is scaled to the voltage in Al3LowVal (13.10). Note1: Al3LowVal (13.10) is only valid if ConvModeAl3 (13.11) $= \pm \mathbf{1 0 V ~ B i}$. Note2: To use current please set the jumper (SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{1 m V}$ Type: \quad SI Volatile: \mathbf{N}				E

Index	Signal / Parameter name				
13.18	TachoLowVal (analog input tacho low value) -100% of the input signal connected to analog input tacho is scaled to the voltage in TachoLowVal (13.18). Note1: TachoLowVal (13.18) is only valid if ConvModeTacho (13.19) $= \pm \mathbf{1 0 V}$ Bi. Note2: To use current please set the jumper (SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{= 1 m V}$ Type: SI Volatile: N		$\begin{array}{ll} 8 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 1 \end{array}$		B
13.19	ConvModeTacho (conversion mode analog input tacho) Analog input tacho signal offset. Analog input tacho on the SDCS-CON-2 is only working with voltage. The distinction between voltage and current is done via jumpers on the SDCS-IOB-3 board: $0= \pm \mathbf{1 0 V ~ B i} \quad-10 \mathrm{~V}$ to $10 \mathrm{~V} /-20 \mathrm{~mA}$ to 20 mA bipolar input, default $1=0 \mathrm{~V}-10 \mathrm{~V}$ Uni $\quad 0 \mathrm{~V}$ to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA unipolar input $2=\mathbf{2 V}-10 \mathrm{~V}$ Uni $\quad 2 \mathrm{~V}$ to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA unipolar input $3=5 \mathrm{~V}$ Offset $\quad 5 \mathrm{~V} / 10 \mathrm{~mA}$ offset in the range 0 V to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $4=6 \mathrm{~V}$ Offset $\quad 6 \mathrm{~V} / 12 \mathrm{~mA}$ offset in the range 2 V to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}				ш
13.20	Unused				
13.21	Al5HighVal (analog input 5 high value) $+100 \%$ of the input signal connected to analog input 5 is scaled to the voltage in AI5HighVal (13.21). Note1: To use current please set the DIP-switches (RAIO-01) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: \mathbf{N}				
13.22	Al5LowVal (analog input 5 low value) -100% of the input signal connected to analog input 5 is scaled to the voltage in AIO5LowVal (13.22). Note1: AI5LowVal (13.22) is only valid if ConvModeAI5 (13.23) $= \pm \mathbf{1 0 V} \mathbf{~ B i}$. Note2: To use current please set the DIP-switches (RAIO-01) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{= 1 \mathrm { mV }}$ Type: \quad SI Volatile: \mathbf{N}				

Index	Signal / Parameter name					
13.26	Al6LowVal (analog input 6 low value) -100% of the input signal connected to analog input 6 is scaled to the voltage in AIO6LowVal (13.26). Note1: Al6LowVal (13.26) is only valid if ConvModeAl6 (13.27) $= \pm \mathbf{1 0 V}$ Bi. Note2: To use current please set the DIP-switches (RAIO-01) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1==1 \mathrm{mV}$ Type: SI Volatile: N		O			
13.27	ConvModeAI6 (conversion mode analog input 6) Analog input 6 signal offset. The distinction between bipolar and unipolar respectively voltage and current is done via DIP-switches on the RAIO-01 board:					
	Digital outputs					
14.01	DO1Index (digital output 1 index) Digital output 1 is controlled by a selectable bit - see DO1BitNo (14.02) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Examples: - If DO1Index (14.01) $=801$ (main status word) and DO1BitNo (14.02) $=1$ (RdyRun) digital output 1 is high when the drive is RdyRun. - If DO1Index (14.01) $=-801$ (main status word) and DO1BitNo (14.02) $=3$ (Tripped) digital output 1 is high when the drive is not faulty. Digital output 1 default setting is: command FansOn CurCtrlStat1 (6.03) bit 0. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: N					
14.02	D01BitNo (digital output 1 bit number) Bit number of the signal/parameter selected with DO1Index (14.02). Int. Scaling: $1=1$ Type: Volatile: N					
14.03	DO2Index (digital output 2 index) Digital output 2 is controlled by a selectable bit - see DO2BitNo (14.04) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Digital output 2 default setting is: command FieldOn CurCtrIStat1 (6.03) bit 5. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N					
14.04	DO2BitNo (digital output 2 bit number) Bit number of the signal/parameter selected with DO2Index (14.03). Int. Scaling: 1 == 1 Type: Volatile: N			010	0	

Index	Signal / Parameter name				
14.05	DO3Index (digital output 3 index) Digital output 3 is controlled by a selectable bit - see DO3BitNo (14.06) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Digital output 3 default setting is: command MainContactorOn CurCtrlStat1 (6.03) bit 7. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}				0
14.06	DO3BitNo (digital output 3 bit number) Bit number of the signal/parameter selected with DO3Index (14.05). Int. Scaling: $1==1$ Type: Volatile: N	0			0
14.07	DO4Index (digital output 4 index) Digital output 4 is controlled by a selectable bit - see DO4BitNo (14.08) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}				0
14.08	DO4BitNo (digital output 4 bit number) Bit number of the signal/parameter selected with DO4Index (14.07). Int. Scaling: $1==1$ Type: Volatile: N	0	10		0
14.09	DO5Index (digital output 5 index) Digital output 5 is controlled by a selectable bit - see DO5BitNo (14.10) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index . Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}				0
14.10	DO5BitNo (digital output 5 bit number) Bit number of the signal/parameter selected with DO5Index (14.09). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	\bigcirc	10		0
14.11	DO6Index (digital output 6 index) Digital output 6 is controlled by a selectable bit - see DO6BitNo (14.12) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}				0
14.12	DO6BitNo (digital output 6 bit number) Bit number of the signal/parameter selected with DO6Index (14.11). Int. Scaling: $1=1$ Type: Volatile: N	0			0
14.13	DO7Index (digital output 7 index) Digital output 7 is controlled by a selectable bit - see DO7BitNo (14.14) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{N}				0
14.14	D07BitNo (digital output 7 bit number) Bit number of the signal/parameter selected with DO7Index (14.13). Int. Scaling: $1==1$ Type: Volatile: N				0
14.15	DO8Index (digital output 8 index) Digital output 8 is controlled by a selectable bit - see DO8BitNo (14.16) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Digital output 8 default setting is: command MainContactorOn CurCtrlStat1 (6.03) bit 7 Int. Scaling: $1==1 \quad$ Type: SI Volatile: N				0
14.16	DO8BitNo (digital output 8 bit number) Bit number of the signal/parameter selected with DO8Index (14.15). Int. Scaling: $1=\mathbf{1}$ Type: Volatile: N				0

Index	Signal / Parameter name		:
	Analog outputs		
15.01	IndexA01 (analog output 1 index) Analog output 1 is controlled by a source (signal/parameter) selected with IndexAO1 (15.01). The format is -xxyy, with: - = negate analog output, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}		0
15.02	CtrIWordAO1 (control word analog output 1) Analog output 1 can be written to via CtrIWordAO1 (15.02) using Adaptive Program, application program or overriding control if IndexAO1 (15.01) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{Y}	c\|cco	0
15.03	ConvModeAO1 (convert mode analog output 1) Analog output 1 signal offset: $0= \pm 10 \mathrm{~V} \mathrm{Bi} \quad-10 \mathrm{~V}$ to 10 V bipolar output, default $1=\mathbf{0 V}-10 \mathrm{~V}$ Uni 0 V to 10 V unipolar output $2=\mathbf{2 V}-\mathbf{1 0 V}$ Uni 2 V to 10 V unipolar output $3=5 \mathrm{~V}$ Offset $\quad 5 \mathrm{~V}$ offset in the range 0 V to 10 V for testing or indication of bipolar signals (e.g. torque, speed, etc.) $4=6 \mathrm{~V}$ Offset $\quad 6 \mathrm{~V}$ offset in the range 2 V to 10 V for testing or indication of bipolar signals (e.g. torque, speed, etc.) Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		0
15.04	FilterAO1 (filter analog output 1) Analog output 1 filter time. Int. Scaling: 1 == 1 ms Type: I Volatile: \mathbf{N}	000	$\stackrel{8}{0} 0$
15.05	ScaleAO1 (scaling analog output 1) 100% of the signal/parameter selected with IndexAO1 (15.01) is scaled to the voltage in ScaleAO1 (16.05). Example: - In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of analog output 1 should equal $\pm 250 \%$ of TorqRefUsed (2.13), set: IndexAO1 (15.01) = 213, ConvModeAO1 (15.03) $= \pm \mathbf{1 0 V ~ B i}$ and ScaleAO1 (15.05) $=4000 \mathrm{mV}$ Int. Scaling: $1=\mathbf{= 1 m V}$ Type: I Volatile: N		≥ 0
15.06	IndexAO2 (analog output 2 index) Analog output 2 is controlled by a source (signal/parameter) selected with IndexAO2 (15.06). The format is -xxyy, with: $-=$ negate analog output, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad SI Volatile: \mathbf{N}	(8)	0
15.07	CtrIWordAO2 (control word analog output 2) Analog output 2 can be written to via CtrIWordAO2 (15.07) using Adaptive Program, application program or overriding control if IndexAO2 (15.06) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: \mathbf{Y}	(1)	0

Index	Signal / Parameter name		:
15.17	CtrIWordAO4 (control word analog output 4) Analog output 4 can be written to via CtrIWordAO4 (15.17) using Adaptive Program, application program or overriding control if IndexAO4 (15.17) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: Y	cos	
15.18	ConvModeAO4 (convert mode analog output 4) Analog output 4 signal offset: $0=0 \mathrm{~mA}-20 \mathrm{~mA}$ Uni 0 mA to 20 mA unipolar output $1=4 \mathrm{~mA}-20 \mathrm{~mA}$ Uni 4 mA to 20 mA unipolar output, default $2=\mathbf{1 0 m A}$ Offset $\quad \begin{aligned} & 10 \mathrm{~mA} \text { offset in the range } 0 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\ & \text { bipolar signals (e.g. torque, speed, etc.) }\end{aligned}$ $3=12 \mathrm{~mA}$ Offset $\quad 12 \mathrm{~mA}$ offset in the range 4 mA to 20 mA for testing or indication of $\begin{array}{lll} & \text { bipolar signals } \\ \text { Int. Scaling: } \\ \mathbf{1}=\mathbf{~ (e . g . ~ t o r q u e , ~ s p e e d , ~ e t c .) ~} \\ \text { Type: } & \text { Volatile: } \mathbf{N}\end{array}$		
15.19	FilterAO4 (filter analog output 4) Analog output 4 filter time. Int. Scaling: $1==1 \mathrm{~ms}$ Type:	000	
15.20	ScaleAO4 (scaling analog output 4) 100% of the signal/parameter selected with IndexAO4 (15.16) is scaled to the current in ScaleAO4 (16.20). Int. Scaling: $1000=\mathbf{= 1 m A}$ Type: \mid Volatile: \mathbf{N}	$\bigcirc \bigcirc 0$	
$\begin{aligned} & 0 \\ & \vdots \\ & \text { O} \\ & \text { 은 } \end{aligned}$	System control inputs		
16.01	Unused		
16.02	ParLock (parameter lock) The user can lock all parameters by means of ParLock (16.02) and SysPassCode (16.03): - To lock parameters set SysPassCode (16.03) to the desired value and change ParLock (16.02) from Open to Locked. - Unlocking of parameters is only possible if the proper pass code (the value which was present during locking) is used. To open parameters set SysPassCode (16.03) to the proper value and change ParLock (16.02) from Locked to Open. After the parameters are locked or opened the value in SysPassCode (16.03) is automatically changed to 0 : $\begin{array}{\|lll} \text { changed to 0: } & & \text { parameter change possible, default } \\ 0=\text { Open } & & \text { Locked } \\ \text { Int. } \text { Scaling: } \mathbf{1 = = 1} & \text { parameter change not possible } \\ \text { Type: } & \text { C } & \text { Volatile: } \mathbf{N} \\ \hline \end{array}$		
16.03	SysPassCode (system pass code) The SysPassCode (16.03) is a number between 1 and 30000 to lock all parameters by means of ParLock (16.02). After using Open or Locked SysPassCode (16.03) is automatically set back to zero. Attention: Do not forget the pass code! Int. Scaling: $1=1 \quad$ Type: \quad Volatile: Y	$\bigcirc 00$	

Index	Signal / Parameter name	*	
16.13	Unused		
16.14	ToolLinkConfig (tool link configuration) The communication speed of the serial communication for the commissioning tool and the application program tool can be selected with ToolLinkConfig (16.14): $\begin{array}{ll} 0=9600 & \\ 1=19600 \text { Baud } \\ 1=19200 & \\ 2=38400 & 38400 \text { Baud } \\ 3=\text { reserved, default } & \end{array}$ If ToolLinkConfig (16.14) is changed its new value is taken over after the next power up. Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: \mathbf{N}		
O 0 0 0 0 0	Data storage		
	Example2: A value can be send from the drive to the overriding control from individual parameters in group 19 via groups 92 or 93 The parameters of group 19 can be written to with the control panel, the commissioning tools, the Adaptive Program and application program. Note1: This parameter group can be used as well for reading/writing analog inputs/outputs.		

Index	Signal / Parameter name	.	$\stackrel{\times}{6}$	
19.01	Data1 (data container 1) Data container 1 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: 1 == 1 Type: SI Volatile: N	¢	$\begin{array}{ll} \stackrel{\rightharpoonup}{0} \\ \stackrel{N}{\mathrm{~N}} \end{array}$	ш
19.02	Data2 (data container 2) Data container 2 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: 1 == 1 Type: SI Volatile: N	-	$\begin{array}{ll} \stackrel{\rightharpoonup}{0} \\ \stackrel{N}{\mathrm{~N}} \end{array}$	ш
19.03	Data3 (data container 3) Data container 3 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: $1=1 \quad$ Type: \quad SI Volatile: \mathbf{N}	-0	$\begin{array}{ll} \stackrel{\rightharpoonup}{0} & 0 \\ \stackrel{\sim}{m} \end{array}$	ш
19.04	Data4 (data container 4) Data container 4 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: $1=1 \quad$ Type: \quad SI Volatile: \mathbf{N}	¢	$\begin{array}{ll} \stackrel{\rightharpoonup}{0} & 0 \\ \stackrel{y}{c} \end{array}$	ш
19.05	Data5 (data container 5) Data container 5 (see group description above) Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}	¢	$\begin{array}{ll} \hat{N} \\ \stackrel{y}{c} \\ \hline \end{array}$	ш
19.06	Data6 (data container 6) Data container 6 (see group description above) Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}		$\begin{array}{ll} \mathbf{N} \\ \stackrel{y}{c} \\ \underset{m}{2} \end{array}$	ш
19.07	Data7 (data container 7) Data container 7 (see group description above) Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}	¢	$\begin{array}{ll} \stackrel{y}{n} & 0 \\ \stackrel{y}{c} \\ \hline \end{array}$	ш
19.08	Data8 (data container 8) Data container 8 (see group description above) Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: N	-	$\begin{array}{ll} \stackrel{N}{0} \\ \stackrel{y}{c} \\ \hline \end{array}$	ш
19.09	Data9 (data container 9) Data container 9 (see group description above) Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}	-	$\begin{array}{ll} \stackrel{N}{0} \\ \stackrel{\rightharpoonup}{c} \\ \hline \end{array}$	ш
19.10	Data10 (data container 10) Data container 10 (see group description above) Int. Scaling: $1=\mathbf{= 1} \quad$ Type: \quad SI Volatile: \mathbf{N}	-	$\stackrel{\substack{\mathrm{e} \\ \underset{\mathrm{~N}}{2} \\ \hline}}{ }$	ш
19.11	Data11 (data container 11) Data container 11 (see group description above) Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}	-	$\begin{array}{ll} \stackrel{\rightharpoonup}{c} \\ \stackrel{y}{c} \\ \mathbf{N} \\ \hline \end{array}$	ш
19.12	Data12 (data container 12) Data container 12 (see group description above) Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}	号		ш

Index	Signal / Parameter name				
20.02	M1SpeedMax (motor 1 maximum speed) Motor 1 positive speed reference limit in rpm for: - SpeedRef2 (2.01) - SpeedRefUsed (2.17) Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note1: M1SpeedMax (20.02) is must be set in the range of: 0.625 to 5 times of M1BaseSpeed (99.04). If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated. Note2: M1SpeedMax (20.02) is also applied to SpeedRef4 (2.18) to avoid exceeding the speed limits by means of SpeedCorr (23.04). To be able to overspeed the drive (e.g. for winder) it is possible to switch off the speed limit for SpeedRef4 (2.18) by means of AuxCtrIWord (7.02) bit 4. Int. Scaling: (2.29) Type: Si Volatile: N				
20.03	ZeroSpeedLim (zero speed limit) When the Run command is removed [set UsedMCW (7.04) bit 3 to zero], the drive will stop as chosen by StopMode (21.03). As soon as the actual speed reaches the limit set by ZeroSpeedLim (20.03) the motor will coast independent of the setting of StopMode (21.03). Existing brakes are closed (applied). While the actual speed is in the limit ZeroSpeed [AuxStatWord (8.02) bit 11] is high. Note1: In case FlyStart (21.10) = StartFrom0 and if the restart command comes before zero speed is reached A137 SpeedNotZero [AlarmWord3 (9.08) bit 4] is generated. Internally limited from: $0 r p m$ to (2.29)rpm Int. Scaling: (2.29) Type: I Volatile: N				
20.04	Unused				
20.05	TorqMax (maximum torque) Maximum torque limit - in percent of the active motor nominal torque - for selector TorqUsedMaxSel (20.18). Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}				
20.06	TorqMin (minimum torque) Minimum torque limit - in percent of the active motor nominal torque - for selector TorqUsedMinSel (20.19). Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N				
20.07	TorqMaxSPC (maximum torque speed controller) Maximum torque limit - in percent of the active motor nominal torque - at the output of the speed controller: Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}				

Index	Signal / Parameter name				5
20.08	TorqMinSPC (minimum torque speed controller) Minimum torque limit - in percent of the active motor nominal torque - at the output of the speed controller. - TorqRef2 (2.09) Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N				
20.09	TorqMaxTref (maximum torque of torque reference A/B) Maximum torque limit - in percent of the active motor nominal torque - for external references: - TorqRefA (25.01) - TorqRefB (25.04) Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	- $\stackrel{\text { L }}{ }$			
20.10	TorqMinTref (minimum torque of torque reference A/B) Minimum torque limit - in percent of the active motor nominal torque - for external references: - TorqRefA (25.01) - TorqRefB (25.04) Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	$\stackrel{\text { セn }}{\text { ¢ }}$		\bigcirc	$\bigcirc{ }^{\circ}$
20.11	Unused				
20.12	M1CurLimBrdg1 (motor 1 current limit of bridge 1) Current limit bridge 1 in percent of M1NomCur (99.03). Setting M1CurLimBrdg1 (20.12) to 0\% disables bridge 1. Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}				0
20.13	M1CurLimBrdg2 (motor 1 current limit of bridge 2) Current limit bridge 2 in percent of M1NomCur (99.03). Setting M1CurLimBrdg2 (20.13) to 0\% disables bridge 2. Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Note2: M1CurLimBrdg2 (20.13) is internally set to 0% if QuadrantType (4.15) = 2-Q (2-Q drive). Int. Scaling: $100=1 \%$ Type: SI Volatile: N				
20.14	ArmAlphaMax (maximum firing angle) Maximum firing angle (α) in degrees. Int. Scaling: $1==1$ deg Type: SI SI Volatile: \mathbf{N}				앙
20.15	ArmAlphaMin (minimum firing angle) Minimum firing angle (α) in degrees. Int. Scaling: 1 == 1 deg Type:				앙
20.16	Unused				
20.17	Unused				

Index	Signal / Parameter name				
20.18		析	¢		0
20.19					0
20.20	Unused				
20.21	Unused				
20.22	TorqGenMax (maximum and minimum torque limit during regenerating) Maximum and minimum torque limit - in percent of the active motor nominal torque - only during regenerating. Note1: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	\bigcirc	$\stackrel{\sim}{\square}$		ш
N 을 O ¢	Start / stop				
21.01	Unused				
21.02	Off1Mode (off 1 mode) Conditions for motor deceleration when UsedMCW (7.04) bit 0 On (respectively Off1N) is set to low: 0 = RampStop \quad stop according to DecTime1 (22.02) or DecTime2 (22.10), default 1 = TorqueLimit stop by active torque limit 2 = CoastStop torque is zero 3 = DynBraking dynamic braking Note1: In case UsedMCW (7.04) bit 0 On and UsedMCW (7.04) bit 3 Run are set to low (run and on commands are taken away) at the same time or nearly contemporary Off1Mode (21.02) and StopMode (21.03) must have the same setting. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}				0

Index	Signal / Parameter name			5
21.03	StopMode (stop mode) Conditions for motor deceleration when UsedMCW (7.04) bit 3 Run is set to low: 0 = RampStop stop according to DecTime1 (22.02) or DecTime2 (22.10), default 1 = TorqueLimit stop by active torque limit 2 = CoastStop torque is zero 3 = DynBraking dynamic braking Note1: In case UsedMCW (7.04) bit 0 On and UsedMCW (7.04) bit 3 Run are set to low (run and on commands are taken away) at the same time or nearly contemporary Off1Mode (21.02) and StopMode (21.03) must have the same setting. Int. Scaling: $1==1$ Type: C Volatile: N			0
21.04	E StopMode (emergency stop mode) Conditions for motor deceleration when UsedMCW (7.04) bit 2 Off3N (respectively E-stop) is set low: $0=$ RampStop \quad stop according to E StopRamp (22.11),default 1 = TorqueLimit stop by active torque limit $2=$ CoastStop torque is zero 3 = DynBraking dynamic braking Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: N			0
21.05	E StopDecMin (emergency stop minimum deceleration rate) During an emergency stop the deceleration of the drive is supervised. This supervision starts after the drive has received an emergency stop and the time delay defined in DecMonDly (21.07) is elapsed. In case the drive isn't able to decelerate within the window, defined by E StopDecMin (21.05) and E StopDecMax (21.06), it is stopped by coasting and AuxStatWord (8.02) bit 2 EStopCoast is set high. Note1: The supervision is disabled in case E StopDecMax (21.06) or E StopDecMin (21.05) is set to default. Int. Scaling: 1 == 1 rpm/s Type: I Volatile: \mathbf{N}			*
21.06	E StopDecMax (emergency stop maximum deceleration rate) During an emergency stop the deceleration of the drive is supervised. This supervision starts after the drive has received an emergency stop and the time delay defined in DecMonDly (21.07) is elapsed. In case the drive isn't able to decelerate within the window, defined by E StopDecMin (21.05) and E StopDecMax (21.06), it is stopped by coasting and AuxStatWord (8.02) bit 2 EStopCoast is set high. Note1: The supervision is disabled in case E StopDecMax (21.06) or E StopDecMin (21.05) is set to default. Int. Scaling: 1 == 1 rpm/s Type: I Volatile: \mathbf{N}			-
21.07	DecMonDly (delay deceleration monitoring) Time delay before the deceleration monitoring of the emergency stop starts. See also E StopDecMin (21.05) and E StopDecMax (21.06). Int. Scaling: $10==1 \mathrm{~s} \quad$ Type: \quad Volatile: N	0 O		« ш
21.08	Unused			
21.09	Unused			

Index	Signal / Parameter name	E	$\stackrel{\text { ® }}{\text { ® }}$:	
21.10	FlyStart (flying start) Selection of the desired operating response to a Run command [UsedMCW (7.04)) bit 3] during braking or coasting: $0=$ StartFrom0 wait until the motor has reached zero speed [see ZeroSpeedLim (20.03)], then restart. In case the restart command comes before zero speed is reached A137 SpeedNotZero [AlarmWord3 (9.08) bit 4] is generated. 1 = FlyingStart start motor with its actual speed, when the drive was stopped by RampStop, TorqueLimit or CoastStop. Stop by DynBraking is not interrupted, wait until zero speed is reached, default 2 = FlyStartDyn reserved Attention: When using FlyStartDyn make sure, that the hardware (e.g. the switch disconnecting the braking resistor) is able to disconnect the current. Int. Scaling: $1==1$ Type: Volatile: N			ш	
21.11	Unused				
21.12	Unused				
21.13	Unused				
21.14	FanDly (fan delay) After the drive has been switched off [UsedMCW (7.04) bit 0 On = 0], both fans (motor and converter) mustn't switched off before FanDly (21.14) has elapsed. If motor or converter overtemperature is pending, the delay starts after the temperature has dropped below the overtemperature limit. Int. Scaling: $1==1 \mathrm{~s}$ Type: I Volatile: \mathbf{N}	\bigcirc			ш
21.15	Unused				
21.16	MainContCtrIMode (main contactor control mode) MainContCtrIMode (21.16) determines the reaction to On and Run commands [UsedMCW (7.04) bits 0 and 3]: $0=\mathbf{O n} \quad$ main contactor closes with $\mathbf{O n}=1$, default $1=$ On\&Run main contactor closes with On = Run = 1 2 = OnHVCB for high voltage AC circuit breaker configuration (for more information see chapter XXXX); not implemented jet Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}	Ó	$\begin{array}{ll} 0 \\ 0 & 0 \\ i \\ 0 \\ 0 & 0 \end{array}$		
21.17	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{6}$		
22.05	ShapeTime (shape time) Speed reference softening time. This function is bypassed during an emergency stop:		co		ш
22.06	Unused				
22.07	VarSlopeRate (variable slope rate) Variable slope is used to control the slope of the speed ramp during a speed reference change. It is active only with VarSlopeRate (22.07) $\neq 0$. VarSlopeRate (22.07) defines the speed ramp time \mathbf{t} for the speed reference change \mathbf{A} : $\mathbf{t}=$ cycle time of the overriding control (e.g. speed reference generation) $\mathbf{A}=$ speed reference change during cycle time \mathbf{t} Note1: In case the overriding control systems cycle time of the speed reference and VarSlopeRate (22.07) are equal the shape of SpeedRef3 (2.02) is a strait line. Int. Scaling: $1==1 \mathrm{~ms}$ Type: Volatile: N		O		
22.08	BaIRampRef (balance ramp reference) The output of the speed ramp can be forced to the value defined by BalRampRef (22.08). The function is released by setting AuxCtrIWord (7.02) bit $3=1$. Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000}$ rpm Int. Scaling: (2.29) Type: Volatile: N				
22.09	AccTime2 (acceleration time 2) The time within the drive will accelerate from zero speed to SpeedScaleAct (2.29): - To expand the ramp time use RampTimeScale (22.03) - AccTime2 (22.09) can be released with Ramp2Sel (22.11) Int. Scaling: $100=\mathbf{1 s}$ Type: Volatile: N		잉		

Index	Signal / Parameter name				
22.10	DecTime2 (deceleration time 2) The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed: - To expand the ramp time use RampTimeScale (22.03) - DecTime2 (22.10) can be released with Ramp2Sel (22.11) Int. Scaling: $100=1 \mathrm{~s}$ Type: Volatile: \mathbf{N}				-
22.11					ш
22.12	JogAccTime (acceleration time jogging) The time within the drive will accelerate from zero speed to SpeedScaleAct (2.29) in case of jogging: - When using jog command Jog1 (10.17) or MainCtrIWord (7.01) bit 8 speed is set by FixedSpeed1 (23.02) - When using jog command Jog2 (10.18)) or MainCtrIWord (7.01) bit 9 speed is set by FixedSpeed2 (23.03) - To expand the ramp time use RampTimeScale (22.03) Int. Scaling: $100=1 \mathrm{~s}$ Type: \quad Volatile: N				

Index	Signal / Parameter name		$\stackrel{\stackrel{\rightharpoonup}{6}}{\stackrel{0}{0}}$	5	O
22.13	JogDecTime (deceleration time jogging) The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed in case of jogging: - When using jog command Jog1 (10.17) or MainCtrlWord (7.01) bit 8 speed is set by FixedSpeed1 (23.02) - When using jog command Jog2 (10.18)) or MainCtrIWord (7.01) bit 9 speed is set by FixedSpeed2 (23.03) - To expand the ramp time use RampTimeScale (22.03) Int. Scaling: $100=\mathbf{= 1 s}$ Type: Volatile: \mathbf{N}		\bigcirc		-
$\begin{aligned} & \underset{N}{N} \\ & \text { 을 } \\ & \mathbf{0} \\ & \mathbf{U} \end{aligned}$	Speed reference				
23.01	SpeedRef (speed reference) Main speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}		$0^{8} 0$		-
23.02	FixedSpeed1 (fixed speed 1) FixedSpeed1 (23.02) is specifying a constant speed reference and overrides SpeedRef2 (2.01) at the speed ramp's input. It can be released by Jog1 (10.17) or MainCtrIWord (7.01) bit 8. The ramp times are set with JogAccTime (22.12) and JogDecTime (22.13). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: \mathbf{N}		$0^{\circ} 0$		-
23.03	FixedSpeed2 (fixed speed 2) FixedSpeed2 (23.03) is specifying a constant speed reference and overrides SpeedRef2 (2.01) at the speed ramp's input. It can be released by Jog2 (10.18) or MainCtrlWord (7.01) bit 9. The ramp times are set with JogAccTime (22.12) and JogDecTime (22.13). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: \mathbf{N}		O		ㅃ
23.04	SpeedCorr (speed correction) The SpeedCorr (23.04) is added to the ramped reference SpeedRef3 (2.02). Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r p m$ Note1: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: Y		80		-
23.05	SpeedShare (speed sharing) Scaling factor SpeedRefUsed (2.17). Before speed ramp. Int. Scaling: $10=\mathbf{1 \%} \quad$ Type: \quad SI Volatile: N		8		

Index	Signal / Parameter name		$\stackrel{\times}{6}$	을
23.06	SpeedErrFilt (filter for $\Delta \mathrm{n}$) Speed error ($\Delta \mathrm{n}$) filter time 1. Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}		응	¢ $\underbrace{\circ}$
	Idea of Window Control: The idea of the Window Control is to block the speed controller as long as the speed error ($\Delta \mathrm{n}$) respectively speed actual remains within the window set by WinWidthPos (23.08) and WinWidthNeg (23.09). This allows the external torque reference [TorqRef1 (2.08)] to affect the process directly. If the speed error (Δn) respectively actual speed exceeds the programmed window, the speed controller becomes active. This function could be called over/underspeed protection in torque control mode:			
23.07	WinIntegOn (window integrator on) Enables the integrator of the speed controller when window control is released: $0=\mathbf{O f f} \quad$ Integrator of the speed controller is blocked when window control is released $1=$ On Integrator of the speed controller is enabled when window control is released To release window control set TorqSel (26.01) = Add and AuxCtrlWord (7.02) bit $7=1$. Int. Scaling: $1==1$ Type: C Volatile: N		ÓO	ш
23.08	WinWidthPos (positive window width) Positive speed limit for the window control, when the speed error $\left(\Delta n=n_{r e t}-n_{a c t}\right)$ is positive. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: \mathbf{N}		80	통

Index	Signal / Parameter name		$\stackrel{\times}{6}$	\#	
23.09	WinWidthNeg (negative window width) Negative speed limit for the window control, when the speed error $\left(\Delta n=n_{r e f}-n_{a c t}\right)$ is negative. $\begin{array}{lc}\text { Internally limited from: }-(2.29) & \frac{32767}{20000} r \text { rpm to }(2.29) * \frac{32767}{20000} r p m \\ \text { Int. Scaling: (2.29) } & \text { Type: } \\ \text { I } & \text { Volatile: } \mathbf{N}\end{array}$		80	ε	
23.10	SpeedStep (speed step) SpeedStep (23.10) is added to the speed error $(\Delta \mathrm{n})$ at the speed controller's input. The given min./max. values are limited by M1SpeedMin (20.02) and M1SpeedMax (20.02). Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note1: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}		$\begin{array}{ll} 0 \\ 0 \\ 0 \\ \hline \end{array}$		
23.11	SpeedErrFilt2 ($\mathbf{2}^{\text {nd }}$ filter for $\Delta \mathbf{n}$) Speed error $(\Delta \mathrm{n})$ filter time 2. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		0	0	
23.12	WinCtrIMode (window control mode) Window control mode: 0 = SpeedErrWin standard window control, Speed error ($\Delta \mathrm{n}$) has to be in a window defined by WinWidthPos (23.08) and WinWidthNeg (23.09), default 1 = SpeedActWin speed actual has to be in a window defined by WinWidthPos (23.08) and WinWidthNeg (23.09) Example1: To get a window of 10 rpm width around the speed error $(\Delta \mathrm{n})$ set: - WinCtrIMode (23.12) = SpeedErrWin - WinWidthPos (23.08) = 5rpm and - WinWidthNeg (23.09) = -5 rpm Example2: To get a window (e.g. 500rpm to 1000rpm) around speed actual set: - WinCtrIMode (23.12) = SpeedActWin - WinWidthPos (23.08) = 1000rpm and - \quad WinWidthNeg (23.09) $=500 \mathrm{rpm}$ To get a window (e.g. -50rpm to 100 rpm) around speed actual set: - WinCtrIMode (23.12) = SpeedActWin - WinWidthPos (23.08) $=100 \mathrm{rpm}$ and - WinWidthNeg (23.09) $=-50 \mathrm{rpm}$ Int. Scaling: $1==1$ Type: Volatile: \mathbf{N}				ш
23.13	AuxSpeedRef (auxiliary speed reference) Auxiliary speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: \mathbf{Y}		O20		
23.14	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{*}$		
24.01	Unused				
24.02	DroopRate (droop rate) The amount of speed decrease caused by the load is determined by DroopRate (24.02). The result is a load dependent speed decrease in percent of SpeedScaleAct (2.29). Example: With DroopRate (24.02) $=3 \%$ and TorqIntegRef (2.05) $=100 \%$ (nominal motor torque) the actual speed decreases 3\% of SpeedScaleAct (2.29). Int. Scaling: $10=1 \%$ Type: I Volatile: N		ㅇㅇ		ㅇ
24.03	KpS (p-part speed controller) Proportional gain of the speed controller can be released by means of Par2Select (24.29). Example: The controller generates 15% of motor nominal torque with $K p S(24.03)=3$, if the speed error (Δn) is 5% of SpeedScaleAct (2.29). Int. Scaling: $100=1$ Type:		-		0
	Load adaptive proportional gain: The adaptive proportional gain of the speed controller is used to smooth out disturbances which are caused by low loads and backlash. Moderate filtering of the speed error $(\Delta \mathrm{n})$ is typically not enough to tune the drive. The load adaptation is valid for positive and negative torque.				
24.04	KpSMin (minimum p-part speed controller) KpSMin (24.04) determines the proportional gain when the speed controller output [TorqRef2 (2.09)] is zero. KpSMin (24.04) cannot be greater than $K p S$ (24.03). Int. Scaling: $100=1 \quad$ Type: \quad I Volatile: N		-		ш
24.05	KpSWeakp (weakening point of p-part speed controller) The speed controller output [TorqRef2 (2.09)], in percent of the active motor nominal torque, where the gain equals $K p S$ (24.03). Int. Scaling: $100=1 \%$ Type:		N్లు		
24.06	KpSWeakpFiltTime (filter time for weakening point of p-part speed controller) Filter time to soften the proportional gains rate of change. Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		안		-
24.07	Unused				
24.08	Unused				

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name	¢ ¢ ¢ ¢ ¢ ¢	등
24.23	PoleFreqRFE (pole frequency resonance frequency eliminator) Frequency of pole. The filter is located at the input of the speed controller. Int. Scaling: $10=1 \mathrm{~Hz}$ Type: I Volatile: N	\bigcirc 윤 아	N. ${ }^{\text {® }}$
24.24	PoleDampRFE (pole damping resonance frequency eliminator) Damping of pole. Int. Scaling: $1000==1$ Type: I Volatile: \mathbf{N}	0 - - No	ш
24.25	SpeedErrorScale ($\Delta \mathrm{n}$ scaling) Scaling factor speed error ($\Delta \mathrm{n}$). Int. Scaling: $10=1 \%$ Type: Volatile: \mathbf{N}	으악앙	ㅇํ ய
24.26	Unused		
24.27	KpS2 ($2^{\text {nd }} \mathbf{p}$-part speed controller) $2^{\text {nd }}$ proportional gain of the speed controller can be released by means of Par2Select (24.29). Int. Scaling: $100=1 \quad$ Type: Volatile: N	\bigcirc ~ ${ }_{\text {ch }}$	ш
24.28	TiS2 (${ }^{\text {nd }}$ i-part speed controller) $2^{\text {nd }}$ integral time of the speed controller can be released by means of Par2Select (24.29). Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: \quad Volatile: \mathbf{N}		¢

Index	Signal / Parameter name		\%				
24.29	Par2Select (selector for $\mathbf{2}^{\text {nd }}$ set of speed controller parameters) Select active speed controller parameters: 0 = ParSet1 1 = ParSet2 2 = SpeedLevel 3 = SpeedError 4 = DI1 5 = DI2 6 = DI3 7 = DI4 8 = DI5 9 = DI6 $10=$ DI7 11 = DI8 12 = DI9 13 = DI10 14 = DI11 $15=$ MCW Bit11 $16=$ MCW Bit12 17 = MCW Bit13 18 = MCW Bit14 19 = MCW Bit15 20 = ACW Bit12 21 = ACW Bit13 22 = ACW Bit14 23 = ACW Bit15 parameter set 1 [KpS (24.03) and TiS (24.09)] is active, default parameter set 2 [KpS2 (24.27) and TiS2 (24.28)] is active If \mid MotSpeed (1.04)\| \leq ISpeedLev (50.10)I, then parameter set1 is active. If \mid MotSpeed (1.04)\| > ISpeedLev (50.10)	, then parameter set 2 is active. If ISpeedErrNeg (2.03)	\leq ISpeedLev (50.10)\|, then parameter set1 is active. If \| SpeedErrNeg (2.03)	> ISpeedLev (50.10)	, then parameter set 2 is active. $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, only available with digital extension board $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, only available with digital extension board $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, only available with digital extension board $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, MainCtrIWord (7.01) bit 11 (7.01) bit 12 (7.01) bit 13 (7.01) bit 14 $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, MainCtrIWord (7.01) bit 15 $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, AuxCtrlWord (7.02) bit 12 (7.02) bit 13 $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, AuxCtrIWord (7.02) bit 14 (7.02) bit 15 Note1: Load and speed dependent adaptation parameters are valid regardless of the selected parameter set. Int. Scaling: 1 == 1 Type: C Volatile: \mathbf{N}		-

Index	Signal / Parameter name		
$\begin{aligned} & \text { N } \\ & \text { 을 } \\ & 0 \\ & \text { ÒU } \end{aligned}$	Torque reference		
25.01	TorqRefA (torque reference A) External torque reference in percent of the active motor nominal torque. TorqRefA (25.01) can be scaled by LoadShare (25.03). Note1: TorqRefA (25.01) is only valid, if TorqRefA Sel (25.10) = TorqRefA. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y		\% ${ }^{\circ}$
25.02	TorqRefA FTC (torque reference A filter time) TorqRefA (25.01) filter time. Int. Scaling: $1=\mathbf{1 m s}$ Type: SI Volatile: N		¢ $\underbrace{\circ}$
25.03	LoadShare (load share) Scaling factor TorqRefA (25.01). Int. Scaling: $10=1 \%$ Type: SI Volatile: \mathbf{N}	악 역 악	ㅇํ ш
25.04	TorqRefB (torque reference B) External torque reference in percent of the active motor nominal torque. TorqRefB (25.04) is ramped by TorqRampUp (25.05) and TorqRampDown (25.06). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		ㅇํ ш
25.05	TorqRampUp (torque ramp up) Ramp time from 0\% to 100%, of active motor nominal torque, for. TorqRefB (25.04). Int. Scaling: $100=1 \mathrm{~s} \quad$ Type: I Volatile: N	$\bigcirc \bigcirc \bigcirc$	0 - 4
25.06	TorqRampDown (torque ramp down) Ramp time from 100% to 0%, of active motor nominal torque, for. TorqRefB (25.04). Int. Scaling: $100=1$ s Type: I Volatile: N	0 잉	00.4
25.07	Unused		
25.08	Unused		
25.09	Unused		
25.10			' \quad

Index	Signal / Parameter name		=0
26.04	TorqMuxMode (torque multiplexer mode) TorqMuxMode (26.04) selects a pair of operation modes. The change between operation modes is done by means of TorqMux (26.05). Torque reference multiplexer: 0 = TorqSel2601 operation mode depends on TorqSel (26.01), default 1 = Speed/Torq operation mode depends on TorqMux (26.05): - binary input $=0 \quad$ speed control (1) - binary input = 1 torque control (2) 2 = Speed/Min operation mode depends on TorqMux (26.05): - binary input $=0 \quad$ speed control (1) - binary input $=1 \quad$ minimum control (3) 3 = Speed/Max operation mode depends on TorqMux (26.05): - binary input $=0 \quad$ speed control (1) - binary input = 1 maximum control (4) 4 = Speed/Limit operation mode depends on TorqMux (26.05): - binary input $=0 \quad$ speed control (1) - binary input = $1 \quad$ limitation control (6) Type: Volatile: \mathbf{N}		ш
26.05	TorqMux (torque multiplexer) TorqMux (26.05) selects a binary input to change between operation modes. The choice of the operation modes is provided by means of TorqMuxMode (26.04). Torque reference multiplexer binary input:		ш

Index	Signal / Parameter name		$\stackrel{\times}{*}$		
26.06	Unused				
26.07	Unused				
26.08	GearStartTorq (gearbox starting torque) Gear backlash compensation: - GearStartTorq (26.08) is the reduced torque limit - in percent of the active motor nominal torque - used after a torque direction change. The torque limit is reduced for the time defined by GearTorqTime (26.09).	\bigcirc	N000		ш
26.09	GearTorqTime (gearbox torque time) Gear backlash compensation function: - When the torque is changing it's direction, the torque limit is reduced for the time defined by GearTorqTime (26.09). Int. Scaling: $1=1 \mathrm{~ms}$ Type: Volatile: N			응	
26.10	GearTorqRamp (gearbox torque ramp) Gear backlash compensation function: - When the torque is changing it's direction, the torque limit is reduced for the time defined by GearTorqTime (26.09). After the time has elapsed, the torque limit is increased to it's normal value according to the ramp time defined by GearTorqRamp (26.10). GearTorqRamp (26.10) defines the time within the torque increases from zero- to active motor nominal torque. Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}			응	
26.11	Unused				
26.12	Unused				
26.13	Unused				
26.14	Unused				

Index	Signal / Parameter name			$\stackrel{\square}{4}$	E	$=$
30.10	ArmCurRiseMax (maximum rise armature current) The drive trips with F539 FastCurRise [FaultWord3 (9.03) bit 6] if ArmCurRiseMax (30.10) - in percent of M1NomCur (99.03) per 1 ms is exceeded. Note1: This trip opens the main contactor and the DC-breaker, if present. Int. Scaling: $100=\mathbf{1 \%} / \mathrm{ms} \quad$ Type: \quad Volatile: \mathbf{N}		へ/ల			\sum_{0}^{0} -
30.11	Unused					
30.12	M1FldMinTrip (motor 1 minimum field trip) The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if M1FldMinTrip (30.12) - in percent of M1NomFldCur (99.11) - is still undershot when FldMinTripDly (45.18) is elapsed. Int. Scaling: $100=1 \%$ Type: I Volatile: N		앙		-	
30.13	M1FIdOvrCurLev (motor 1 field overcurrent level) The drive trips with F515 M1FexOverCur [FaultWord1 (9.01) bit 14] if M1FldOvrCurLev (30.13) - in percent of M1NomFldCur (99.11) - is exceeded. The field overcurrent fault is inactive, if M1FldOvrCurLev (30.13) is set to 135%. Int. Scaling: $100=1 \%$ Type: I Volatile: N		$\stackrel{\sim}{\sim}$	-	\bigcirc	
30.14	SpeedFbMonLev (speed feedback monitor level) The drive reacts according to SpeedFbFltSel (30.17) if the measured speed feedback [SpeedActEnc (1.03) or SpeedActTach (1.05)] does not exceed SpeedFbMonLev (30.14) while the measured EMF exceeds EMF FbMonLev (30.15). Internally limited from: $0 r p m$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Example: With SpeedFbMonLev (30.14) = 15 rpm and EMF FbMonLev (30.15) $=50 \mathrm{~V}$ the drive trips when the EMF is $>50 \mathrm{~V}$ while the speed feedback is $\leq 15 \mathrm{rpm}$. Int. Scaling: (2.29) Type: I Volatile: N					
30.15	EMF FbMonLev (EMF feedback monitor level) The speed measurement monitoring function is activated, when the measured EMF exceeds EMF FbMonLev (30.15). See also SpeedFbMonLev (30.14). Int. Scaling: $1=1 \mathrm{~V}$ Type: I Volatile: \mathbf{N}					
30.16	M1OvrSpeed (motor 1 overspeed) The drive trips with F532 MotOverSpeed [FaultWord2 (9.02) bit 15] if M1OvrSpeed (30.16) is exceeded. Internally limited from: 0rpm to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note1: The value of M1OvrSpeed (30.16) is as well used for the analog tacho tuning. Any change of its value has the consequence that A115 TachoRange [AlarmWord1 (9.06) bit 15] comes up for 10 seconds and M1TachoAdjust (50.12) respectively M1TachoVolt1000 (50.13) have to be adjusted anew. The adjustment can be done by means of ServiceMode (99.06) = TachFineTune. Int. Scaling: (2.29) Type: Volatile: N				E	0

Index	Signal / Parameter name	¢	5
30.17	SpeedFbFItSel (speed feedback fault selector) SpeedFbFItSel (30.17) determines the reaction to a speed feedback problem: $0=$ NotUsed no reaction 1 = Fault \quad the drive trips according to SpeedFbFltMode (30.36) and sets F522 SpeedFb [FaultWord2 (9.02) bit 5], default $2=E M F / F a u l t \quad$ the speed feedback is switched to EMF, the drive stops according to E StopRamp (22.11) and sets F522 SpeedFb [FaultWord2 (9.02) bit 5] 3 = EMF/Alarm the speed feedback is switched to EMF and A125 SpeedFb [AlarmWord2 (9.07) bit 8] is set Note1: In case the actual speed of the drive is in the field weakening area SpeedFbFISSel (30.17) reacts as if it is set to Fault, this is not valid for selection NotUsed. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		ш
30.18	CurRippleSel (current ripple selector) CurRippleSel (30.18) determines the reaction when CurRippleLim (30.19) is reached: $0=$ NotUsed no reaction 1 = Fault the drive trips with F517 ArmCurRipple [FaultWord2 (9.02) bit 0], default 2 = Alarm A117 ArmCurRipple [AlarmWord2 (9.07) bit 0] is set Note1: The current ripple function detects: - a broken fuse, thyristor or current transformer (T51, T52) - too high gain of the current controller Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		ш
30.19	CurRippleLim (current ripple limit) Threshold for CurRippleSel (30.18), in percent of M1NomCur (99.03). Typical values when a thyristor is missing: - armature about 300% - high inductive loads (e.g. excitation) about 90% Int. Scaling: $100=1 \%$ Type: \quad Volatile: N	\bigcirc 응 0	$\bigcirc{ }^{\circ}$ 山
30.20	Unused		
30.21	```PwrLossTrip (power loss trip) The action taken, when the mains voltage undershoots UNetMin2 (30.23): 0 = Immediately the drive trips immediately with F512 MainsLowVolt [FaultWord1 (9.01) bit 11], default \(1=\) Delayed \(\quad\) A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.25) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated Int. Scaling: \(1=\mathbf{1}\) Type: C Volatile: \(\mathbf{N}\)```		ш
30.22	UNetMin1 (mains voltage minimum 1) First (upper) limit for mains undervoltage monitoring in percent of NomMainsVolt (99.10). If the mains voltage undershoots UNetMin1 (30.22) following actions take place: - the firing angle is set to ArmAlphaMax (20.14), - single firing pulses are applied in order to extinguish the current as fast as possible, - the controllers are frozen, - the speed ramp output is updated from the measured speed and - A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.25) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated. Note1: UNetMin2 (30.23) isn't monitored, unless the mains voltage drops below UNetMin1 (30.22) first. Thus for a proper function of the mains undervoltage monitoring UNetMin1 (30.22) has to be larger than UNetMin2 (30.23). Int. Scaling: $100=\mathbf{1 \%}$ Type: I Volatile: \mathbf{N}	$\bigcirc \bigcirc 0$	$\bigcirc 0$

Index	Signal / Parameter name					
30.23	UnetMin2 (mains voltage minimum 2) Second (lower) limit for mains undervoltage monitoring in percent of NomMainsVolt (99.10). If the mains voltage undershoots UnetMin2 (30.23) following actions take place: - if PwrLossTrip (30.21) = Immediately: - the drive trips immediately with F512 MainsLowVolt [FaultWord1 (9.01) bit 11] - if PwrLossTrip (30.21) = Delayed: - field acknowledge signals are ignored, - the firing angle is set to ArmAlphaMax (20.14), - single firing pulses are applied in order to extinguish the current as fast as possible, - the controllers are frozen - the speed ramp output is updated from the measured speed and - A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.25) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated. Note1: UNetMin2 (30.23) isn't monitored, unless the mains voltage drops below UNetMin1 (30.22) first. Thus for a proper function of the mains undervoltage monitoring UNetMin1 (30.22) has to be larger than UNetMin2 (30.23). Int. Scaling: $100=1 \%$ Type: Volatile: \mathbf{N}				\bigcirc	
30.24	PowrDownTime (power down time) The mains voltage must recover (over both limits) within PowrDownTime (30.24). Otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] will be generated. Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: I Volatile: \mathbf{N}				$\stackrel{\circ}{\circ}$	

Index	Signal / Parameter name			
30.25				ш
30.26	Unused			

Index	Signal / Parameter name		5
30.32	ExtAlarmSel (external alarm selector) The drive sets A126 ExternaIDI [AlarmWord2 (9.07) bit 9] if a binary input for an external alarm is selected and 1: Scaling: $1=1$ (7.02) bit 15 Int. Scaling: $1==1$ Type: Volatile: N		0
30.33	ExtFaultOnSel (external fault on selector) ExtFaultOnSel (30.33) determines the reaction to an external fault: $0=$ Fault external fault is always valid independent from drive state, default 1 = Fault\&RdyRun external fault is only valid when drive state is RdyRun [MainStatWord (8.01) bit 1] for at least 6 s Int. Scaling: $\mathbf{1 = = 1}$ Type: \quad C Volatile: \mathbf{N}		ш
30.34	```ExtAlarmOnSel (external alarm on selector) ExtAlarmOnSel (30.34) determines the reaction to an external alarm: \(0=\) Alarm \(\quad\) external alarm is always valid independent from drive state, default 1 = Alarm\&RdyRun external alarm is only valid when drive state is RdyRun [MainStatWord (8.01) bit 1] for at least 6 s Int. Scaling: \(1==1 \quad\) Type: \(\quad\) C Volatile: \(\mathbf{N}\)```		ш
30.35	FB TimeOut (fieldbus time out) Time delay before a communication break with a fieldbus is declared. Depending on the setting of ComLossCtrl (30.28) either F528 FieldBusCom [FaultWord2 (9.02) bit 11] or A128 FieldBusCom [AlarmWord2 (9.07) bit 11] is set. The communication fault and alarm are inactive, if FB TimeOut (30.35) is set to 0 ms . Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}	\bigcirc	0
30.36	SpeedFbFItMode (speed feedback fault mode) SpeedFbFItMode (30.36) determines the reaction to a fault of trip level 3: $0=$ CoastStop torque is zero, default 1 = DynBraking dynamic braking Note1: SpeedFbFItMode (30.36) doesn't apply to communication faults. Int. Scaling: $1=\mathbf{= 1} \quad$ Type: \quad C Volatile: \mathbf{N}		ш

Index	Signal / Parameter name		
	Motor 1 temperature		
31.01	M1ModelTime (motor 1 model time constant) Thermal time constant for motor 1 . The time within the temperature rises to 63% of its nominal value. The motor thermal model is blocked, if M1ModelTime (31.01) is set to zero. Int. Scaling: $10=1$ s Type: I Volatile: N		0.4
31.02	Unused		
31.03	M1AlarmLimLoad (motor 1 alarm limit load) The drive sets A107 M1OverLoad [AlarmWord1 (9.06) bit 6] if M1AlarmLimLoad (31.03) - in percent of M1NomCur (99.03) - is exceeded. Output value for motor 1 thermal model is Mot1TempCalc (1.20). Int. Scaling: $10=1 \%$ Type: I Volatile: N	의 성응	- ${ }^{\circ}$
31.04	M1FaultLimLoad (motor 1 fault limit load) The drive trips with F507 M1OverLoad [FaultWord1 (9.01) bit 6] if M1FaultLimLoad (31.04) - in percent of M1NomCur (99.03) - is exceeded. Output value for motor 1 thermal model is Mot1TempCalc (1.20). Int. Scaling: $10=1 \%$ Type: I Volatile: N	우슝ㅇㅇㅇ	- 0^{-1}
31.05	M1TempSel (motor 1 temperature selector) M1TempSel (31.05) selects motor 1 measured temperature input. Connection possibilities for PT100: - max. 3 PT100 for motor 1 and max. 3 PT100 for motor 2 or - up to 6 PT100 for motor 1 only. Connection possibilities PTC: - max. 1 PTC for motor 1 and max. 1 PTC for motor 2 or up to 2 PTC for motor 1 only: $0=$ NotUsed \quad motor 1 temperature measurement is blocked, default 1 = 1PT100 Al2 one PT100 connected to AI2 on SDCS-IOB-3 $2=2$ PT100 Al2 two PT100 connected to AI2 on SDCS-IOB-3 $3=$ 3PT100 Al2 three PT100 connected to AI2 on SDCS-IOB-3 $4=4 \mathrm{PT} 100 \mathrm{Al2} / 3$ four PT100, 3 connected to AI2 and 1 connected to AI3 on SDCS-IOB-3 $5=5$ PT100 AI2/3 five PT100, 3 connected to Al2 and 2 connected to Al3 on SDCS-IOB-3 $6=6$ PT100 Al2/3 six PT100, 3 connected to AI2 and 3 connected to AI3 on SDCS-IOB-3 $7=1 \mathrm{PT} 100$ AI7 one PT100 connected to AI7 on RAIO2 $8=2$ PT100 AI7 two PT100 connected to AI7 on RAIO2 9 = 3PT100 AI7 three PT100 connected to AI7 on RAIO2 $10=4$ PT100 AI7/8 four PT100, 3 connected to AI7 and 1 connected to AI8 on RAIO2 $11=5$ PT100 AI7/8 five PT100, 3 connected to AI7 and 2 connected to AI8 on RAIO2 $12=6 \mathrm{PT} 100$ AI7/8 six PT100, 3 connected to AI7 and 3 connected to AI8 on RAIO2 $13=1$ PTC AI2 \quad one PTC connected to AI2 on SDCS-IOB-3 $14=2$ PTC AI2/3 two PTC, 1 connected to AI2 and 1 connected to AI3 on SDCS-IOB-3 15 = 1PTC AI2/Con one PTC connected to AI2 on SDCS-CON-4 Note1: AI7 and AI8 have to be activated by means of AIO ExtModule (98.06). Note2: In case only one PT100 is connected to an AI of the SDCS-IOB-3 the input range must be configured by jumpers to a gain of 10 . Jumper settings for input range and constant current source see Hardware manual. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		${ }^{\prime} 0$

Index	Signal / Parameter name		0	0_{0}^{0}
31.06	M1AlarmLimTemp (motor 1 alarm limit temperature) The drive sets A106 M1OverTemp [AlarmWord1 (9.06) bit 5] if M1AlarmLimTemp (31.06) is exceeded. Output value for motor 1 measured temperature is Mot1TempMeas (1.22). Note1: The units depends on M1TempSel (31.05). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N	윽융		$\therefore 0$
31.07	M1FaultLimTemp (motor 1 fault limit temperature) The drive trips with F506 M1OverTemp [FaultWord1 (9.01) bit 5] if M1FaultLimTemp (31.07) is exceeded. Output value for motor 1 measured temperature is Mot1TempMeas (1.22). Note1: The units depends on M1TempSel (31.05). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N	운응	-	$\therefore 0$
31.08	M1KlixonSel (motor 1 klixon selector) The drive trips with F506 M1OverTemp [FaultWord1 (9.01) bit 5] if a digital input selected and the klixon is open: $\begin{array}{ll} 0=\text { NotUsed } & \text { no reaction, default } \\ 1 \text { = DI1 } & 0=\text { fault, } 1=\text { no fault } \\ 2=\text { DI2 } & 0=\text { fault, } 1=\text { no fault } \\ 3=\text { DI3 } & 0=\text { fault, } 1=\text { no fault } \\ 4=\text { DI4 } & 0=\text { fault, } 1=\text { no fault } \\ 5 \text { = DI5 } & 0=\text { fault, } 1=\text { no fault } \\ 6=\text { DI6 } & 0=\text { fault, } 1=\text { no fault } \\ 7 \text { = DI7 } & 0=\text { fault, } 1=\text { no fault } \\ 8 \text { = DI8 } & 0=\text { fault, } 1=\text { no fault } \\ 9 \text { = DI9 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \\ 10=\text { DI10 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \\ 11 \text { = DI11 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \end{array}$			0
$\begin{aligned} & \text { M } \\ & \text { O} \\ & \frac{0}{3} \\ & \vdots \end{aligned}$	Control panel display			
	Signal and parameter visualization on the control panel : Setting a display parameter to 0 results in no signal or parameter displayed. Setting a display parameter from 101 to 9999 displays the belonging signal or parameter. If a signal or parameter does not exist, the display shows "n.a.".			

Index	Signal / Parameter name	E			
34.01	DispParam1Sel (select signal / parameter to be displayed in control panel row 1) Index pointer to the destination of the control panel first display row [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: $1==1$ Type: Volatile: N	\bigcirc	-8,		0
34.02	Unused				
34.03	Unused				
34.04	Unused				
34.05	Unused				
34.06	Unused				
34.07	Unused				
34.08	DispParam2Sel (select signal / parameter to be displayed in control panel row 2) Index pointer to the destination of the control panel second display row [e.g. 114 equals ArmVoltAct (1.14)]. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	\bigcirc	$\stackrel{8}{\circ}$		0
34.09	Unused				
34.10	Unused				
34.11	Unused				
34.12	Unused				
34.13	Unused				
34.14	Unused				
34.15	DispParam3Sel (select signal / parameter to be displayed in control panel row 3) Index pointer to the destination of the control panel third display row [e.g. 116 equals ConvCurAct (1.16)]. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		옹		0
34.16	Unused				
34.17	Unused				
34.18	Unused				
34.19	Unused				
34.20	Unused				
34.21	Unused				

Index	Signal / Parameter name		
42.01	M1BrakeCtrl (motor 1 brake control) Releases the control of the brake: $0=\text { NotUsed brake control blocked, default }$ $1=\text { On brake control is released }$ The brake open (lift) command is readable in AuxStatWord (8.02) bit 8 and can be connected to the digital output controlling the brake. The brake control can be overwritten by AuxCtrIWord2 (7.03) bit 12. The brake is always applied in case ForceBrake $=1$. Otherwise the brake is controlled by the internal brake logic. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		ш
42.02	M1BrakeAckSel (motor 1 brake acknowledge selector) The drive sets either A122 MechBrake [AlarmWord2 (9.07) bit 5] or trips with F552 MechBrake [FaultWord4 (9.04) bit 3] depending on BrakeFaultFunc (42.06) if a digital input is selected and the brake acknowledge fails: ```\(0=\) NotUsed brake acknowledge is blocked, default \(1=\) DI1 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(2=\) DI2 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(3=\) DI3 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(4=\) DI4 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(5=\) DI5 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(6=\) DI6 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) 7 = DI7 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(8=\) DI8 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(9=\) DI9 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted). Only available with digital extension board \(10=\) DI10 \(0=\) brake is applied, \(1=\) brake is open (lifted). Only available with digital extension board \(11=\) DI11 \(0=\) brake is applied, \(1=\) brake is open (lifted). Only available with digital extension board Int. Scaling: \(1==1\) Type: C Volatile: N```		ш
42.03	M1BrakeOpenDly (motor 1 brake open delay) Brake open (lift) delay. This function compensates for the mechanical open (lift) delay of the brake. Int. Scaling: $10==1$ s Type: I Volatile: N	0150	
42.04	M1BrakeCloseDly (motor 1 brake close delay) Brake close (apply) delay. This function compensates for the time the drive needs to decelerated from ZeroSpeedLim (20.03) to actual speed $=0$. Int. Scaling: $10==1 \mathrm{~s} \quad$ Type: \quad Volatile: N	0150	
42.05	Unused		
42.06	BrakeFaultFunc (brake fault function) BrakeFaultFunc (42.06) determines the reaction to an invalid brake acknowledge: 0 = Alarm the drive sets A122 MechBrake [AlarmWord2 (9.07) bit 5] 1 = Fault the drive trips with F552 MechBrake [FaultWord4 (9.04) bit 3], default Note1: With Run [UsedMCW (7.04) bit 3] set 0, motor speed below ZeroSpeedLim (20.03), M1BrakeCloseDly (42.04) elapsed and acknowledge brake applied (closed) is missing F552 MechBrake [FaultWord4 (9.04) bit 3] is overwritten and A122 MechBrake [AlarmWord2 (9.07) bit $5]$ is set. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}		

Index	Signal / Parameter name		0 \%
42.07	StrtTorqRefSel (starting torque reference selector) Start torque selector: Note1: Torque proving is to give the brake open (lift) command only, when torque actual has reached StrtTorqRef (42.08). In case torque actual does not reach StrtTorqRef (42.08) either A122 MechBrake [AlarmWord2 (9.07) bit 5] is set or the drive trips with F552 MechBrake [FaultWord4 (9.04) bit 3] depending on BrakeFaultFunc (42.06). Note2: Torque memory is the presetting of the torque when starting with e.g. suspended load. The preset torque equals the actual torque stored when the brake open (lift) command is removed. If the preset torque is zero, StrtTorqRef (42.08) is used. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: N		-
42.08	StrtTorqRef (starting torque reference) Start torque - in percent of the active motor nominal torque - for torque proving. Int. Scaling: $100=1 \%$ Type: I Volatile: N	\bigcirc - ${ }^{\circ}$	\bigcirc
42.09	BrakeEStopMode (emergency stop mode brake) BrakeEStopMode (42.09) determines the reaction when UsedMCW (7.04) bit 2 Off3N (respectively E-stop) is set low: $0=$ Disable the brake is closed according to standard brake control, default 1 = Enable the brake is closed immediately with the E-stop Int. Scaling: $1=1 \quad$ Type: C Volatile: \mathbf{N}	\%	- ${ }^{\text {u }}$
$\begin{aligned} & \text { 〒 } \\ & \text { O} \\ & \text { O} \\ & \text { 은 } \end{aligned}$	Current control		
43.01	```OperModeSel (operation mode selector) Converter mode selection: 0 = ArmConv }6\mathrm{ pulse single armature converter, default 1 = FieldConv field exciter mode; Attention: The digital input for the external overvoltage protection is assigned by means of OvrVoltProt (10.13). 2=12PParMaster 12-pulse parallel master 3= 12PParSlave 12-pulse parallel slave 4=12PSerMaster 12-pulse serial master 5=12PSerSlave 12-pulse serial slave = reserved to 11 = reserved``` This parameter is write protected while Run [UsedMCW (7.04) bit 3] $=1$. Int. Scaling: $1=1 \quad$ Type: \mathbf{C} Volatile: \mathbf{N}		

Index	Signal / Parameter name		$\stackrel{\star}{*}{ }_{\text {® }}$		=
43.02	```CurSel (current reference selector) CurSel (43.02) selector: 0 = CurRef311 CurRef (3.11) calculated from torque reference, default 1 = CurRefExt CurRefExt (43.03) external current reference 2 = Al1 analog input Al1 \(3=\) Al2 \(\quad\) analog input Al2 \(4=\) Al3 \(\quad\) analog input Al3 \(5=\) Al4 \(\quad\) analog input AI4 \(6=\) Al5 \(\quad\) analog input AI5 7 = Al6 \(\quad\) analog input AI6 8 = FexCurRef field current reference from armature converter via DCSLink, only if OperModeSel (43.01) = FieldConv 9 = FluxRefEMF FluxRefEMF (3.27) EMF controller reference, only if OperModeSel (43.01) = FieldConv``` Note1: In case OperModeSel (43.01) is 12PParSlave CurSel (43.02) is overwritten by the current reference from the 12-pulse parallel master. Int. Scaling: $1=1$ Type: C Volatile: N				0
43.03	CurRefExt (external current reference) External current reference in percent of M1NomCur (99.03). Note1: CurRefExt (43.03) is only valid, if CurSel (43.02) = CurRefExt. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}				ш
43.04	CurRefSlope (current reference slope) CurRefSlope (43.04) in percent of M1NomCur (99.03) per 1 ms . The di/dt limitation is located at the input of the current controller. Int. Scaling: $100=1 \% / \mathrm{ms}$ Type: I Volatile: N			으0 0 0	\% ${ }^{0}$
43.05			0		ш
43.06	M1KpArmCur (motor 1 p-part armature current controller) Proportional gain of the current controller. Example: The controller generates 15 \% of motor nominal current [M1NomCur (99.03)] with M1KpArmCur (43.06) $=3$, if the current error is 5% of M1NomCur (99.03). Int. Scaling: $100=1$ Type: Volatile: N				0

Index	Signal / Parameter name	.	$\stackrel{\times}{6}$ ¢		¢
43.07	M1TiArmCur (motor 1 i-part armature current controller) Integral time of the current controller. M1TiArmCur (43.07) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% of motor nominal current [M1NomCur (99.03)] with M1KpArmCur (43.06) $=3$, if the current error is 5% of M1NomCur (99.03). On that condition and with M1TiArmCur (43.07) $=50 \mathrm{~ms}$ follows: - the controller generates 30% of motor nominal current, if the current error is constant, after 50 ms are elapsed (15% from proportional part and 15% from integral part). Setting M1TiArmCur (43.07) to 0 ms disables the integral part of the current controller and resets its integrator. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		8	앙	0
43.08	M1DiscontCurLim (motor 1 discontinuous current limit) Threshold continuous / discontinuous current in percent of M1NomCur (99.03). The actual continuous / discontinuous current state can be read from CurCtrlStat1 (6.03) bit 12. Int. Scaling: $100=1 \%$ Type: I Volatile: N			\bigcirc	0
43.09	M1ArmL (motor 1 armature inductance) Inductance of the armature circuit in mH . Used for the EMF compensation: $E M F=U_{A}-R_{A} * I_{A}-L_{A} * \frac{d I_{A}}{d t}$ Int. Scaling: $100=\mathbf{1 m H}$ Type: I Volatile: N		¢	I	I 0
43.10	M1ArmR (motor 1 armature resistance) Resistance of the armature circuit in $\mathrm{m} \Omega$. Used for the EMF compensation: $\begin{aligned} & E M F=U_{A}-R_{A} * I_{A}-L_{A} * \frac{d I_{A}}{d t} \\ & \text { Int. Scaling: } \mathbf{1}=\mathbf{1} \mathbf{~ m} \Omega \quad \text { Type: } \quad \text { I Volatile: } \mathbf{N} \end{aligned}$		O		
43.11	Unused				
43.12	Uk (relative short circuit impedance) For more information contact Your ABB representative. Int. Scaling: $10=1 \%$ Type: I Volatile: \mathbf{N}			\bigcirc	$\bigcirc{ }^{\circ}$ 山

Index	Signal / Parameter name	立	$\stackrel{\times}{\text { ® }}$	0		S
43.20	ArmCurLimSpeed3 (armature current at speed limit 3) Armature current limit - in percent of M1NomCur (99.03) - at speed: $(43.17)+\frac{1}{2} *\left[n_{\max }-(43.17)\right]$ with: $\mathrm{n}_{\text {max }}=\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$ Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: Volatile: \mathbf{N}					ш
43.21	ArmCurLimSpeed4 (armature current at speed limit 4) Armature current limit - in percent of M1NomCur (99.03) - at speed: $(43.17)+\frac{3}{4} *\left[n_{\max }-(43.17)\right]$ with: $\mathrm{n}_{\text {max }}=\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$ Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: Volatile: N					ш
43.22	ArmCurLimSpeed5 (armature current at speed limit 5) Armature current limit - in percent of M1NomCur (99.03) - at $\mathrm{n}_{\max }=\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$. Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: I Volatile: N					ш
43.23	Unused					
43.24	PwrSupplyRefExt (external reference power supply) External power supply current reference in percent of M1NomVolt (99.02). Note1: PwrSupplyRefExt (43.24) is only valid, if ControlModeSel (43.05) = PowerSupply2. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{N}				\bigcirc	이

Index	Signal / Parameter name		$\stackrel{\substack{e \\ ¢}}{ }$		完	${ }_{5}^{0}$
44.07	EMF CtrIPosLim (positive limit EMF controller) Positive limit for EMF controller in percent of nominal flux. Int. Scaling: $1==1 \% \quad$ Type: Volatile: N		앙		O	ш
44.08	EMF CtrINegLim (negative limit EMF controller) Negative limit for EMF controller in percent of nominal flux. Int. Scaling: $1=1 \% \quad$ Type: Volatile: N		0		\%	ш
44.09	KpEMF (p-part EMF controller) Proportional gain of the EMF controller. Example: The controller generates 15% of motor nominal EMF with KpEMF (44.09) $=3$, if the EMF error is 5% of M1NomVolt (99.02). Int. Scaling: $100=1 \quad$ Type: I Volatile: N		N/N			ш
44.10	TiEMF (i-part EMF controller) Integral time of the EMF controller. TiEMF (44.10) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% of motor nominal EMF with KpEMF (44.09) $=3$, if the EMF error is 5% of M1NomVolt (99.02). On that condition and with TiEMF (44.10) $=20 \mathrm{~ms}$ follows: - the controller generates 30% of motor nominal EMF, if the EMF error is constant, after 20 ms are elapsed (15% from proportional part and 15% from integral part). Setting TiEMF (44.10) to 0 ms disables the integral part of the EMF controller and resets its integrator. Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: N		8 0 0 4		\&	¢
44.11	Unused					
44.12	FldCurFlux40 (field current at 40\% flux) Field current at 40\% flux in percent of M1NomFldCur (99.11). Int. Scaling: 1==1\% Type: I Volatile: N		8		$\bigcirc{ }^{\circ}$	\bigcirc -
44.13	FldCurFlux70 (field current at 70\% flux) Field current at 70\% flux in percent of M1NomFldCur (99.11). Int. Scaling: 1==1\% Type: I Volatile: N		앙		20	\bigcirc -
44.14	FldCurFlux90 (field current at 90\% flux) Field current at 90\% flux in percent of M1NomFldCur (99.11). Int. Scaling: $1==1 \% \quad$ Type: \quad Volatile: N)	ш
44.15	FldWeakDyn (dynamic field weakening) If the motor speed passes the field weakening point (== base speed) quickly, voltage overshoot may occur. To solve this problem the field weakening point can be lowered by means of FldWeakDyn (44.15). FldWeakDyn (44.15) is set in percent of M1BaseSpeed (99.04). Note1: The lowered field weakening point is compensated by the EMF controller in case of constant speed or slow speed change. EMF CtrIPosLim (44.07) has to be set high enough to allow the EMF controller to compensate. Int. Scaling: $1=1 \% \quad$ Type: \quad I Volatile: N					ㅇ
44.16	Unused					

Index	Signal / Parameter name				
44.17					ш
44.18	FIdBoostFact (field boost factor) Field boost factor in percent of M1NomFldCur (99.11). The resulting field boost current must be lower than the nominal current of the used field exciter. If the field boost current is out of range A132 ParConflict [AlarmWord2 (9.07) bit 15] is generated. Note1: If FIdBoostFact (44.18) > 100\% and M1UsedFexType (99.12) = OnBoard to DCF804-0060 or FEX-4-Term5A S M1FldSacle (45.20) has to be set accordingly. Example: M1NomFldCur (99.11) = 20 A and FldBoostFact (44.18) $=150 \%$ then S M1FldSacle (45.20) $=30 \mathrm{~A}$ Note2: If FldBoostFact (44.18) > 100\% and M2UsedFexType (49.07) = OnBoard to DCF804-0060 or FEX-4-Term5A S M2FIdSacle (45.21) has to be set accordingly. Int. Scaling: $1==1 \% \quad$ Type: \quad I Volatile: N				
44.19	FIdBoostTime (field boost time) Time the field boost should last. Int. Scaling: $1==1 \mathrm{~s} \quad$ Type:				
44.20	Unused				

Index	Signal / Parameter name		=
44.21	RevVoltMargin (reversal voltage margin) RevVoltMargin (44.21) - in percent of NomMainsVolt (99.10) - is a safety margin for the motor voltage during regenerative mode. Setting RevVoltMargin (44.21) to 0 disables the function. For regenerative mode is valid: $U_{\text {genMotor }}=\left\|U_{\text {genMax }}\right\|-U_{\text {Safety }}$ with $\quad U_{\text {genMax }}=1.35 * \cos \alpha_{\max } * U_{\text {Mains }}$ $U_{\text {genMax }}=1.35 * \cos (20.14) * U_{\text {Mains }}$ and $\quad U_{\text {Safety }}=(44.21)$ follows: $U_{\text {genMotor }}=\left\|1.35 * \cos (20.14) * U_{\text {Mains }}\right\|-(44.21) * U_{\text {Mains }}$ Example: With ArmAlphaMax (20.14) $=150^{\circ}$, RevVoltMargin (44.21) $=10 \%$ and $\mathrm{U}_{\text {Mains }}=$ NomMainsVolt (99.10) follows: $\left\lvert\, \begin{aligned} & U_{\text {genMotor }}=\left\|1.35 * \cos 150^{\circ} * U_{\text {Mains }}\right\|-0.1 * U_{\text {Mains }} \\ & U_{\text {genMotor }}=\left\|-1.16 * U_{\text {Mains }}\right\|-0.1 * U_{\text {Mains }} \end{aligned}\right.$ $U_{\text {genMotor }}=1.06 * U_{\text {Mains }}$ Int. Scaling: $100=1 \%$ Type: I Volatile: N	$\bigcirc \bigcirc 0$	
44.22	VoltRefExt (external voltage reference) External voltage reference in percent of M1NomVolt (99.02). Note1: VoltRefExt (44.22) is only valid, if EMF RefSel (44.23) = VoltRefExt. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y	$\bigcirc \bigcirc$	

Index	Signal / Parameter name	¢		=	
44.23	```EMF RefSel (EMF reference selector) EMF RefSel (44.23) selector: 0 = EMF Internal internally calculated EMF, default 1 = VoltRefExt VoltRefExt (44.22) external voltage reference 2 = Al1 analog input Al1 3 = Al2 analog input Al2 4 = Al3 analog input AI3 5 = Al4 analog input AI4 \(6=\) Al5 analog input AI5 7 = Al6 analog input AI6 Int. Scaling: \(1=\mathbf{1}\) Type: c Volatile: N```		年		ш
44.24	Unused				
44.25	VoltCorr (voltage correction) Voltage correction in percent of M1NomVolt (99.02). Added to VoltRef1 (3.25). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	$\bigcirc 8$			ш
44.26	VoltRefSlope (voltage reference slope) Voltage reference slope in percent M1NomVolt (99.02) per 1 ms . The dv/dt limitation is located at the input of the EMF controller. Int. Scaling: $100==1 \% / \mathrm{ms}$ Type: $1 \quad$ Volatile: \mathbf{N}	\bigcirc	8 ¢	\sim	\sum_{0}^{0} -
44.27	FluxCorr (flux correction) FluxCorr (44.27) is added to the sum of the flux reference FluxRefSum (3.28). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{N}	$\stackrel{8}{1}$	O 0	\bigcirc	$\bigcirc{ }^{\circ}$ -
$\begin{aligned} & \stackrel{\circ}{+} \\ & \text { 을 } \\ & \text { oㄴ } \end{aligned}$	Field converter settings				
45.01	M1FreewhiLev (motor 1 freewheeling level) Motor 1 field exciter free wheeling level [only when M1UsedFexType (99.12) = DCF804-0050 or DCF804-0060] in percent / ms of the actual field exciter supply voltage. If 2 successive AC-voltage measurements differ more than M1FreewhlLev (45.01), the free-wheeling function is activated. Int. Scaling: $1==1 \% / m s$ Type: Volatile: N		O	近	\sum_{0}^{0}
45.02	M1PosLimCtrl (motor 1 positive output limit field current controller) Positive output limit for motor 1 field exciter current controller in percent of the maximum field exciter output voltage. Note: 4-Q field exciters which can reverse the field current will used M1PosLimCtrl (45.02) also as negative limit. Int. Scaling: $100=1 \% \quad$ Type: \quad Volatile: N		응	0°	- ${ }^{-1}$
45.03	Unused				
45.04	Unused				

Index	Signal / Parameter name				
45.05	M1FIdRefMode (motor 1 field current reference mode) M1FIdRefMode (45.05) selector: $0=$ Internal \quad motor 1 field current reference according to shared motion MotSel (8.09) or field heating FldHeatSel (21.18), default 1 = M2FIdCurRef field current reference is taken from motor 2 2 = M1FIdRefExt M1FldRefExt (45.06) external field current reference				ш
45.06	M1FIdRefExt (motor 1 external field current reference) Motor 1 external field current reference input in percent of M1NomFldCur (99.11). Note1: M1FIdRefExt (45.06) is only valid, if M1FldRefMode (45.05) = M1FIdRefExt. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}				ш
45.07	ForceFIdDir (force field current direction) Motor 1 field direction force command: $0=$ NotUsed \quad the field direction is controlled by FldCtrIMode (44.01) and TorqRefUsed $1=$ Forward \quad field direction is forced to forward direction $2=$ Reverse field direction is forced to reverse direction 3 = ExtReverse In case an external contactor in the field current loop is used to change the field direction, ForceFldDir (45.07) has to be switched between Forward and ExtReverse. ExtReverse adapts the armature voltage and speed supervision. The external contactor interlocking and the control of ForceFldDir (45.07) has to be done by means of Adaptive Program, application program or overriding control. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}		c\|cc		ш

| Index | \quad Signal / Parameter name | V |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name				
45.13	M2FIdRefMode (motor 2 field current reference mode) M2FIdRefMode (45.13) selector: 0 = Internal motor 2 field current reference according to shared motion MotSel (8.09) or field heating FldHeatSel (21.18), default 1 = M1FIdCurRef field current reference is taken from motor 1 2 = M2FIdRefExt M2FIdRefExt (45.14) external field current reference				ш
45.14	M2FIdRefExt (motor 2 external field current reference) Motor 2 external field current reference input in percent of M2NomFldCur (49.05). Note1: M2FIdRefExt (45.14) is only valid, if M2FIdRefMode (45.13) = M2FIdRefExt. Int. Scaling: $100=1 \%$ Type: SI Volatile: N			0	
45.15	M2FreewhILev (motor 2 freewheeling level) Motor 2 field exciter free wheeling level [only when M2UsedFexType (49.07) = DCF804-0050 or DCF804-0060] in percent / ms of the actual field exciter supply voltage. If 2 successive AC-voltage measurements differ more than M2FreewhlLev (45.15), the free-wheeling function is activated. Int. Scaling: $1==1 \% / m s$ Type: Volatile: N		\bigcirc		
45.16	M2PosLimCtrl (motor 2 positive output limit field current controller Positive output limit for motor 2 field exciter current controller in percent of the maximum field exciter output voltage. Note: 4-Q field exciters which can reverse the field current will used M2PosLimCtrl (45.16) also as negative limit. Int. Scaling: $100=1 \%$ Type: I Volatile: N				

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name				
47.02	DiffCurLim (current difference level) Permitted current difference between the converters in 12-pulse parallel configuration in percent of M1NomCur (99.03). The drive trips with F534 12PCurDiff [FaultWord3 (9.03) bit 1] if DiffCurLim (47.02) is still exceeded when DiffCurDly (47.03) is elapsed. DiffCurLim (47.02) is only active in the 12-pulse parallel master. Int. Scaling: 1==1\% Type: I Volatile: N		응앙		$\bigcirc{ }^{\circ} \mathrm{w}$
47.03	DiffCurDly (current difference delay) DiffCurDly (47.03) delays F534 12PCurDiff [FaultWord3 (9.03) bit 1]. If the current difference becomes smaller than DiffCurLim (47.02) before the delay is elapsed F534 will be disregarded: - DiffCurLim (47.02) DiffCurDly (47.03) is only active in the 12-pulse parallel master. Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: I Volatile: \mathbf{N}				¢ ¢
47.04	Unused				
47.05	12P RevTimeOut (12-pulse reversal timeout) Additionally in 12-pulse mode the current direction of both - master and slave - bridges is monitored. The drive trips with F533 ReversalTime [FaultWord3 (9.03) bit 0] if the 2 converters have different bridges fired for more than 12P RevTimeOut (47.05). 12P RevTimeOut (47.05) is only active in the 12-pulse master. Note1: 12P RevTimeOut (47.05) must be longer than ZeroCurTimeOut (97.19). Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		8		ш
	Shared motion				
49.01	M2NomVolt (motor 2 nominal voltage) Motor 2 nominal armature voltage (DC) from the motor rating plate. Note1: In 12-pulse serial mode, this parameter has to be set to the value of the voltage the converter itself is providing. This is usually 50% of the rated motor voltage, if one motor is connected. In case 2 motors in series are connected it is 100% of one motor's rated voltage. Note2: The hardware of the measuring circuit has to be adapted for motor voltages lower than 50V. Int. Scaling: $1==1 \mathrm{~V}$ Type: Volatile: N	15			

Index	Signal / Parameter name		$\stackrel{\times}{6}$		
49.02	M2NomCur (motor 2 nominal current) Motor 2 nominal armature current (DC) from the motor rating plate. If several motors are connected to the drive, enter the total current of all motors. Note1: In 12-pulse parallel mode, this parameter has to be set to the value of the current the converter itself is providing. This is usually 50% of the rated motor current, if one motor is connected. In case 2 motors in parallel are connected it is 100% of one motor's rated current. Note2: In case the converter is used as a 3-phase field exciter use M2NomCur (49.02) to set the nominal field current. Int. Scaling: $1==1$ A Type: I Volatile: \mathbf{N}	O			
49.03	M2BaseSpeed (motor 2 base speed) Motor 2 base speed from the rating plate, usually the field weak point. M2BaseSpeed (49.03) is must be set in the range of: 0.2 to 1.6 times of SpeedScaleAct (2.29). If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated. Int. Scaling: $10=\mathbf{1 r p m}$ Type: I Volatile: \mathbf{N}				
49.04	Unused				
49.05	M2NomFldCur (motor 2 nominal field current) Motor 2 nominal field current from the motor rating plate. Note1: In case the converter is used as a 3-phase field exciter use M2NomCur (49.05) to set the nominal field current. Int. Scaling: $100=1$ A Type: I Volatile: N			-	
49.06	M2FIdHeatRef (motor 2 field heating reference) Field current reference - in percent of M2NomFieldCur (49.05) - for field heating [FIdHeatSel (21.18)] or field reducing. The field reducing is released for motor 2 by means of M2FIdHeatRef (49.06) < 100\% and activated, if: - \quad Run $=1$ [UsedMCW (7.04) bit 3] for longer than 10 s and - the other motor is selected via ParChange (10.10 and can be seen in MotSel (8.09)) Int. Scaling: $1=1 \%$ Type: Volatile: N				ш
49.07	M2UsedFexType (motor 2 used field exciter type) Select motor 2 used field exciter type: $0=$ NotUsed \quad no or foreign field exciter connected 1 = OnBoard integrated 1-Q field exciter (for sizes D1 - D4 only), default 2 = FEX-425-Int internal 1-Q 25 A field exciter (for size D5 only) 3 = DCF803-0035 external 1-Q 35 A field exciter used for field currents from 5 A to 35 A (terminals X100.1 and X100.3) 4 = DCF803-0050 external 1-Q 50 A field exciter 5 = DCF804-0050 external 4-Q 50 A field exciter $6=$ DCF803-0060 external 1-Q 60 A field exciter 7 = DCF804-0060 external 4-Q 60 A field exciter 8 = DCS800-S01 external 2-Q 3-phase field exciter 9 = DCS800-S02 external 4-Q 3-phase field exciter $10=$ reserved to $19=$ reserved $20=$ FEX-4-Term5A external 1-Q 35 A field exciter used for field currents from 0.3 A to $5 \mathbf{A}$ (terminals X100.2 and X100.3) $21=$ reserved If the fex type is changed its new value is taken over after the next power-up. Int. Scaling: $1==1 \quad$ Type: \quad C \quad Volatile: \mathbf{N}		0 0 0 2 2 2		' ш

Index	Signal / Parameter name		$\stackrel{\times}{\text { ® }}$		
49.08	M2FIdMinTrip (motor 2 minimum field trip) The drive trips with F542 M2FexLowCur [FaultWord3 (9.03) bit 9] if M2F/dMinTrip (49.08) - in percent of M2NomFldCur (49.05) - is still undershot when FldMinTripDly (45.18) is elapsed. Int. Scaling: $100=\mathbf{1 \%}$ Type: I Volatile: \mathbf{N}				ш
49.09	M2FIdOvrCurLev (motor 2 field overcurrent level) The drive trips with F518 M2FexOverCur [FaultWord2 (9.02) bit 1] if M2FldOvrCurLev (49.09) - in percent of M2NomFldCur (49.05) - is exceeded. The field overcurrent fault is inactive, if M2FldOvrCurLev (49.09) is set to 135%. Int. Scaling: $100=1 \%$ Type: Volatile: N				ш
49.10	M2KpFex (motor 2 p-part field current controller) Proportional gain of the field current controller. Example: The controller generates 15% of motor nominal field current [M2NomFldCur (49.05)] with M2KpFex $(49.10)=3$, if the field current error is 5% of M2NomFldCur (49.05). Int. Scaling: $100=1$ Type: Volatile: N				ш
49.11	M2TiFex (motor 2 i-part field current controller) Integral time of the field current controller. M2TiFex (49.11) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% of motor nominal field current [M2NomFldCur (49.05] with M2KpFex $(49.10)=3$, if the field current error is 5% of M2NomFldCur (49.05). On that condition and with M2TiFex (49.11) = 200 ms follows: - the controller generates 30% of motor nominal field current, if the current error is constant, after 200 ms are elapsed (15% from proportional part and 15% from integral part). Setting M2TiFex (49.11) to 0 ms disables the integral part of the field current controller and resets its integrator. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: N				(6)
49.12	M2CurLimBrdg1 (motor 2 current limit of bridge 1) Current limit bridge 1 in percent of M2NomCur (49.02). Setting M2CurLimBrdg1 (49.12) to 0\% disables bridge 1. Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N				ш
49.13	M2CurLimBrdg2 (motor 2 current limit of bridge 2) Current limit bridge 2 in percent of M2NomCur (49.02). Setting M2CurLimBrdg2 (49.13) to 0\% disables bridge 2. Note1: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Note2: M2CurLimBrdg2 (49.13) is internally set to 0\% if QuadrantType (4.15) $=2-\mathrm{Q}$ ($2-\mathrm{Q}$ drive). Int. Scaling: $100=1 \%$ Type: SI Volatile: N			안	- ${ }^{\circ}$
49.14	M2KpArmCur (motor 2 p-part armature current controller) Proportional gain of the current controller. Example: The controller generates 15% of motor nominal current [M2NomCur (49.02)] with M2KpArmCur (49.14) $=3$, if the current error is 5% of M2NomCur (49.02). Int. Scaling: $100=1$ Type: Volatile: \mathbf{N}				ш

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |, | M2TiArmCur (motor 2 i-part armature current controller) |
| :--- |
| Integral time of the current controller. M2TiArmCur (49.15) defines the time within the integral part |
| of the controller achieves the same value as the proportional part. |
| Example: |
| The controller generates 15\% of motor nominal current [M2NomCur (49.02)] with M2KpArmCur |
| (49.14) = 3, if the current error is 5\% of M2NomCur (49.02). On that condition and with
 M2TiArmCur (49.15) = 50 ms follows:
 the controller generates 30\% of motor nominal current, if the current error is constant,
 after 50 ms are elapsed (15\% from proportional part and 15\% from integral part). |

Index	Signal／Parameter name	－			
49.23	M2EncMeasMode（motor 2 encoder measuring mode） M2EncMeasMode（49．23）selects the measurement mode for the pulse encoder： $0=A+/ B$ Dir channel A：rising edges for speed；channel B：direction 1 ＝A＋－ channel A ：rising and falling edges for speed；channel B ：not used $2=A+/ B$ Dir channel A ：rising and falling edges for speed；channel B ：direction 3 ＝A＋－／B＋－ channel A \＆B：rising and falling edges for speed and direction，default Int．Scaling： $1==1$ Type： Volatile： N				ш
49.24	M2SpeedFbSel（motor 2speed feedback selector） Motor 2 speed feedback selection： $0=$ EMF \quad speed is calculated by means of the EMF，default 1 ＝Encoder speed is measured by means of a pulse encoder 2 ＝Tacho speed is measured by means of an analog tacho 3 ＝External MotSpeed（1．04）is updated by Adaptive Program，application program or overriding control． Int．Scaling： $1==1$ Type： C Volatile： \mathbf{N}		牙洔		ш
49.25	M2EncPulseNo（motor 2 encoder pulse number） Number of pulse encoder pulses per revolution． Int．Scaling： 1 ＝＝ 1 ppr Type：\quad Volatile： N		응	잉	ㄹ．
49.26	M2TachoAdjust（motor 2 tacho adjust） Fine tuning of analog tacho．The value equals the actual speed measured by means of a hand held tacho： －M2TachoAdjust（49．26）＝speed actual \qquad Internally limited to：$\pm(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note1： Changes of M2TachoAdjust（49．26）are only valid during tacho fine tuning［ServiceMode（99．06）＝ TachFineTune］．During tacho fine tuning M2SpeedFbSel（49．24）is automatically forced to EMF． Attention： The value of M2TachoAdjust（49．26）has to be the speed measured by the hand held tacho and not the delta between speed reference and measured speed． Int．Scaling：（2．29） Type： Volatile： Y		$0^{8} 0$		ह
49.27	M2TachoVolt1000（motor 2 tacho voltage at 1000rpm） M2TachoVolt1000（49．27）is used to adjust the voltage the analog tacho is generating at a speed of 1000 rpm ： －M1TachoVolt1000（50．13）$\geq 1 \mathrm{~V}$ ，the setting is used to calculate tacho gain －M1TachoVolt1000（50．13）$=0 \mathrm{~V}$ ，the tacho gain is measured by means of the speed feedback assistant －M1TachoVolt1000（50．13）＝-1 V ，the tacho gain was successfully measured by means of the speed feedback assistant Note1： Use ServiceMode（99．06）$=$ TachFineTune Int．Scaling： $10=1 \mathrm{~V}$ Type：I Volatile： N				
49.28	M2BrakeCtrl（motor 2 brake control） Releases the control of the brake： $0=$ NotUsed brake control blocked，default $1=$ On brake control is released The brake open（lift）command is readable in AuxStatWord（8．02）bit 8 and can be connected to the digital output controlling the brake． The brake control can be overwritten by AuxCtrIWord2（7．03）bit 12．The brake is always applied in case ForceBrake＝1．Otherwise the brake is controlled by the internal brake logic． Int．Scaling： $1=\mathbf{1}$ Type： C Volatile： \mathbf{N}	守			ш

Index	Signal / Parameter name			=0	
49.29	M2BrakeAckSel (motor 2 brake acknowledge selector) The drive sets either A122 MechBrake [AlarmWord2 (9.07) bit 5] or trips with F552 MechBrake [FaultWord4 (9.04) bit 3] depending on BrakeFaultFunc (42.06) if a digital input is selected and the brake acknowledge fails: ```\(0=\) NotUsed brake acknowledge is blocked, default \(1=\) DI1 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(2=\) DI2 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(3=\) DI3 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(4=\) DI4 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(5=\) DI5 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(6=\) DI6 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(7=\) DI7 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(8=\) DI8 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted) \(9=\) DI9 \(\quad 0=\) brake is applied, \(1=\) brake is open (lifted). Only available with digital extension board \(10=\) DI10 \(0=\) brake is applied, \(1=\) brake is open (lifted). Only available with digital extension board \(0=\) brake is applied, \(1=\) brake is open (lifted). Only available with digital extension board Int. Scaling: \(1==1\) Type: C Volatile: \(\mathbf{N}\)```	?	8 0 0 0 0 8		ш
49.30	M2BrakeOpenDly (motor 2 brake open delay) Brake open (lift) delay. This function compensates for the mechanical open (lift) delay of the brake. Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: \quad Volatile: N	\bigcirc	-		¢ -
49.31	M2BrakeCloseDly (motor 2 brake close delay) Brake close (apply) delay. This function compensates for the time the drive needs to decelerated from ZeroSpeedLim (20.03) to actual speed $=0$. Int. Scaling: $10=1$ s Type: I Volatile: N	0	100		๗ แ
49.32	M2ModelTime (motor 2 model time constant) Thermal time constant for motor 1 . The time within the temperature rises to 63% of its nominal value. The motor thermal model is blocked, if M2ModelTime (49.32) is set to zero. Int. Scaling: $10=1$ s Type: I Volatile: N				๑ ய
49.33	M2AlarmLimLoad (motor 2 alarm limit load) The drive sets A110 M2OverLoad [AlarmWord1 (9.06) bit 9] if M2AlarmLimLoad (49.33) - in percent of M2NomCur (49.02) - is exceeded. Output value for motor 1 thermal model is Mot2TempCalc (1.21). Int. Scaling: $10=1 \%$ Type: I Volatile: N			\circ°	
49.34	M2FaultLimLoad (motor 2 fault limit load) The drive trips with F510 M2OverLoad [FaultWord1 (9.01) bit 9] if M2FaultLimLoad (49.34) - in percent of M2NomCur (49.02) - is exceeded. Output value for motor 1 thermal model is Mot2TempCalc (1.21). Int. Scaling: $10=1 \%$ Type: Volatile: N				

Index	Signal / Parameter name	,			
49.35	M2TempSel (motor 2 temperature selector) M2TempSel (49.33) selects motor 2 measured temperature input. Connection possibilities for PT100: - max. 3 PT100 for motor 2 and max. 3 PT100 for motor 1 or - up to 6 PT100 for motor 2 only. Connection possibilities PTC: - max. 1 PTC for motor 2 and max. 1 PTC for motor 1 or - up to 2 PTC for motor 2 only: $0=$ NotUsed \quad motor 2 temperature measurement is blocked, default $1=1$ PT100 Al3 one PT100 connected to AI3 on SDCS-IOB-3 $2=2 \mathrm{PT} 100 \mathrm{Al} 3$ two PT100 connected to AI3 on SDCS-IOB-3 3 = 3PT100 Al3 three PT100 connected to AI3 on SDCS-IOB-3 $4=4$ PT100 AI3/2 four PT100, 3 connected to Al3 and 1 connected to AI2 on SDCS-IOB-3 $5=5$ PT100 AI3/2 five PT100, 3 connected to AI3 and 2 connected to AI2 on SDCS-IOB-3 $6=6$ PT100 Al3/2 six PT100, 3 connected to AI3 and 3 connected to AI2 on SDCS-IOB-3 $7=1$ PT100 Al8 one PT100 connected to Al8 on RAIO2 $8=2$ PT100 Al8 two PT100 connected to AI8 on RAIO2 $9=3$ PT100 Al8 three PT100 connected to AI8 on RAIO2 $10=$ 4PT100 AI8/7 four PT100, 3 connected to AI8 and 1 connected to AI7 on RAIO2 $11=5$ PT100 Al8/7 five PT100, 3 connected to AI8 and 2 connected to AI7 on RAIO2 $12=6$ PT100 AI8/7 six PT100, 3 connected to AI8 and 3 connected to AI7 on RAIO2 $13=1$ PTC Al3 one PTC connected to AI3 on SDCS-IOB-3 14 = 2PTC AI3/2 two PTC, 1 connected to AI3 and 1 connected to AI2 on SDCS-IOB-3 $15=1$ PTC AI2/Con one PTC connected to AI2 on SDCS-CON-4 Note1: AI7 and AI8 have to be activated by means of AIO ExtModule (98.06). Note2: In case only one PT100 is connected to an AI of the SDCS-IOB-3 the input range must be configured by jumpers to a gain of 10 . Jumper settings for input range and constant current source see Hardware manual. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}				ш
49.36	M2AlarmLimTemp (motor 2 alarm limit temperature) The drive sets A108 M2OverTemp [AlarmWord1 (9.06) bit 8] if M2AlarmLimTemp (49.36) is exceeded. Output value for motor 1 measured temperature is Mot2TempMeas (1.23). Note1: The units depends on M2TempSel (49.35). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N		\%		
49.37	M2FaultLimTemp (motor 2 fault limit temperature) The drive trips with F509 M2OverTemp [FaultWord1 (9.01) bit 8] if M2FaultLimTemp (49.37) is exceeded. Output value for motor 1 measured temperature is Mot2TempMeas (1.23). Note1: The units depends on M2TempSel (49.35). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N				

Index	Signal / Parameter name			O	
49.38	M2KlixonSel (motor 2 klixon selector) The drive trips with F509 M2OverTemp [FaultWord1 (9.01) bit 8] if a digital input selected and the klixon is open: $\begin{array}{ll} 0=\text { NotUsed } & \text { no reaction, default } \\ 1=\text { DI1 } & 0=\text { fault, } 1=\text { no fault } \\ 2=\text { DI2 } & 0=\text { fault, } 1=\text { no fault } \\ 3=\text { DI3 } & 0=\text { fault, } 1=\text { no fault } \\ 4=\text { DI4 } & 0=\text { fault, } 1=\text { no fault } \\ 5=\text { DI5 } & 0=\text { fault, } 1=\text { no fault } \\ 6=\text { DI6 } & 0=\text { fault, } 1=\text { no fault } \\ 7=\text { DI7 } & 0=\text { fault, } 1=\text { no fault } \\ 8 \text { = DI8 } & 0=\text { fault, } 1=\text { no fault } \\ 9=\text { DI9 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \\ 10=\text { DI10 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \\ 11=\text { DI11 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \end{array}$				
	Speed measurement				
50.01	M1SpeedScale (motor 1 speed scaling) Motor 1 speed scaling in rpm. M1SpeedScale (50.01) defines the speed - in rpm - that corresponds to 20.000 speed units. The speed scaling is released when M1SpeedScale (50.01) ≥ 10 : - 20.000 speed units $==$ M1SpeedScale (50.01), in case M1SpeedScale (50.01) ≥ 10 - 20.000 speed units $==$ maximum absolute value of M1SpeedMin (20.01) and M1SpeedMax (20.02), in case M1SpeedScale (50.01) < 10 or mathematically - If $(50.01) \geq 10$ then $20.000==(50.01)$ in rpm - If $(50.01)<10$ then $20.000==\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$ in rpm The actual used speed scaling is visible in SpeedScale Act (2.29). Note1: M1SpeedScale (50.01) has to be set in case the speed is read or written by means of an overriding control (e.g. fieldbus). Note2: M1SpeedScale (50.01) is must be set in the range of: 0.625 to 5 times of M1BaseSpeed (99.04). If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated. Commissioning hint: - set M1SpeedScale (50.01) to maximum speed - set M1BaseSpeed (99.04) to base speed - set M1SpeedMax (20.02) / M1SpeedMin (20.01) to \pm maximum speed Int. Scaling: $10=1 \mathrm{rpm}$ Type: Volatile: N				
50.02	M1EncMeasMode (motor 1 encoder measuring mode) M1EncMeasMode (50.02) selects the measurement mode for the pulse encoder: $0=\mathbf{A}+$ /B Dir channel A: rising edges for speed; channel B: direction $1=\mathbf{A}+-$ channel A : rising and falling edges for speed; channel B : not used $2=A+-/ B$ Dir channel A : rising and falling edges for speed; channel B : direction 3 = A+-/B+channel A \& B: rising and falling edges for speed and direction, default Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: N				ш

Index	Signal / Parameter name	¢ ¢ ¢ ¢ ¢ ¢	=0
50.03	M1SpeedFbSel (motor 1speed feedback selector) Motor 1 speed feedback selection: $0=$ EMF \quad speed is calculated by means of the EMF, default 1 = Encoder speed is measured by means of a pulse encoder $2=$ Tacho speed is measured by means of an analog tacho 3 = External MotSpeed (1.04) is updated by Adaptive Program, application program or overriding control. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: N		0
50.04	M1EncPulseNo (motor 1 encoder pulse number) Number of pulse encoder pulses per revolution. Int. Scaling: 1 == 1 ppr Type: I Volatile: \mathbf{N}	앙ㅇㅇㅇ	응
50.05	Unused		
50.06	SpeedFiltTime (actual speed filter time) Speed actual filter time for MotSpeed (1.04). Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}	$\bigcirc 0$	¢ ¢
50.07	PosCountMode (position counter mode) The position counter is based on the pulse count of the pulse encoder, with all pulse edges are counted. The 32-bit position value is divided in 2 16-bit words: $0=$ PulseEdges for low word PosCountLow (3.07) respectively PosCountInitLo (50.08) is valid 1 == 1 pulse edge for high word PosCountHigh (3.08) respectively PosCount/nitHi (50.09) is valid $1==65536$ pulse edges 1 = Scaled \quad for low word PosCountLow (3.07) respectively PosCountInitLo (50.08) is valid $0==0^{\circ}$ and $65536=360^{\circ}$ for high word PosCountHigh (3.08) respectively PosCountlnitHi (50.09) is valid $1==1$ revolution, default The position counter is controlled by SyncCommand (10.04) and AuxCtrIWord (7.02) bits 9 to 11. The status can be seen from AuxStatWord (8.02) bit 5 SyncRdy. The position control function has to be implemented by Adaptive Program, application program or overriding control. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		
50.08	PosCountInitLo (Position counter low initial value) Position counter initial low word. Unit depends on setting of PosCountMode (50.07): - PulseEdges 1 == 1 pulse edge - Scaled $\quad 0==0^{\circ}$ and $65536==360^{\circ}$ See also SyncCommand (10.04). Int. Scaling: $1==1 \quad$ Type: I Volatile: N	$\bigcirc 0$	ш
50.09	PosCountInitHi (Position counter high initial value) Position counter initial high word. Unit depends on setting of PosCountMode (50.07): - PulseEdges $1==65536$ pulse edges - Scaled $\quad 1==1$ revolution See also SyncCommand (10.04). Int. Scaling: $1==1 \quad$ Type: SI Volatile: N	c\|cor	ш
50.10	SpeedLev (speed level) When MotSpeed (1.04) reaches SpeedLev (50.10) the bit AboveLimit [MainStatWord (8.01) bit 10] is set. Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Int. Scaling: (2.29) Type: Volatile: \mathbf{N}	0 O	탕

| Index | Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name		
	Fieldbus		
	This parameter group defines the communication parameters for fieldbus adapters (Fxxx, Rxxx and $N x x x$). The parameter names and the number of the used parameters depend on the selected fieldbus adapter (see fieldbus adapter manual). Note1: If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.		
51.01	Fieldbus1 (fieldbus parameter 1) Fieldbus parameter 1		0
.	...		0
51.15	Fieldbus15 (fieldbus parameter 15) Fieldbus parameter 15 Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad Volatile: \mathbf{N}	$\bigcirc \bigcirc$	0
51.16	Fieldbus16 (fieldbus parameter 16) Fieldbus parameter 16	$\bigcirc \bigcirc$	0
...	...		0
51.27	FBA PAR REFRESH (fieldbus parameter refreshing) If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter. FBA PAR REFRESH (51.27) is automatically set back to DONE after the refreshing is finished. $0=$ DONE default 1 = RESET refresh the parameters of the fieldbus adapter Note1: This service is only available for Rxxx fieldbus adapters. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}		0
	\ldots...		0
51.31	Fieldbus31 (fieldbus parameter 31) Fieldbus parameter 31 Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad Volatile: N	$\bigcirc \bigcirc\|c\| c \mid c$	0

Index	Signal / Parameter name	家	$: \stackrel{0}{5}$
Modbu			
	This parameter group defines the communication parameters for the Modbus adapter RMBA-xx (see also Modbus adapter manual). Note1: If a Modbus parameter is changed its new value takes effect only upon the next power up of the Modbus adapter.		
52.01	StationNumber (station number) Defines the address of the station. Two stations with the same station number are not allowed online. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	-	ш
52.02			ш
52.03	```Parity (parity) Defines the use of parity and stop bit(s). The same setting must be used in all online stations: 0 = reserved 1 = None1Stopbit no parity bit, one stop bit \(2=\) None2Stopbits no parity bit, two stop bits 3 = Odd odd parity indication bit, one stop bit 4 = Even \(\quad\) even parity indication bit, one stop bit, default Int. Scaling: \(1=1\) Type: C Volatile: \(\mathbf{N}\)```		ш

Index	Signal / Parameter name			¢	
$\begin{aligned} & \text { 오 } \\ & \text { 을 } \\ & \text { O} \\ & \text { ㄴ } \end{aligned}$					
70.01	Ch0 NodeAddr (channel 0 node address) Channel 0 is used for communication with the overriding control. Node address channel 0 : - if APC2 or NCSA-01 (AC31) is used Ch0 NodeAddr (70.01) = 1 - if AC70 or AC80 is used via the optical module bus (adapters TB810 or TB811) Ch0 NodeAddr (70.01) is calculated from the POSTION terminal of the DRIENG data base element as follows: 1. multiply the hundreds of the value POSITION by 16 2. add the tens and ones of the value POSITION to the result Example: - if AC 800M is used via the optical module bus Ch0 NodeAddr (70.01) is calculated from the position of the DCS600 ENG hardware module as follows: 1. multiply the hundreds of the value POSITION by 16 2. add the tens and ones of the value POSITION to the result Example:	\bigcirc	へัก		ш
70.02	Ch0 LinkControl (channel 0 link control) I DDCS channel 0 intensity control for transmission LEDs. This parameter can be used in special cases to optimize the communication performance of the link. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	-	용응		ш
70.03	Ch0 BaudRate (channel 0 baud rate) Channel 0 communication speed. Ch0 BaudRate (70.03) must be set to 4 Mbits/s when Advant controller communication modules (e.g. FCI or FBA) are used. Otherwise the overriding control automatically sets the communication speed. $\begin{array}{rllll} \begin{array}{llll} 0 & =8 \mathrm{Mbits} / \mathrm{s} & & \\ 1 & =4 \mathrm{Mbits} / \mathrm{s} \text {, default } & & \\ 2 & =2 \mathrm{Mbits} / \mathrm{s} & & \\ 3 & =1 \mathrm{Mbits} / \mathrm{s} & & \\ \text { Int. Scaling: } \mathbf{1}=\mathbf{=} \quad \text { Type: } & \text { C } & \text { Volatile: } \mathbf{N} \end{array} \end{array}$				ш
70.04	Ch0 TimeOut (channel 0 timeout) Time delay before a communication break with channel 0 is declared. Depending on the setting of Ch0 ComLossCtrl (70.05) either F543 COM8Com [FaultWord3 (9.03) bit 10] or A113 COM8Com [AlarmWord1 (9.06) bit 12] is set. The communication fault and alarm are inactive, if ChO TimeOut (70.04) is set to 0 ms . Note1: The supervision is activated after the reception of the first valid message. Note2: The time out starts when the link doesn't update any of the first 2 receive datasets addressed by Ch0 DsetBaseAddr (70.24). Example: When Ch0 DsetBaseAddr (70.24) $=10$ the reception of datasets 10 and 12 is supervised. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		아앙		

Index	Signal / Parameter name	E			
70.19	Ch2 FolSig2 (channel 2 follower signal 2) Follower signal 2 receives via channel 2 the $2^{\text {nd }}$ value of dataset 41 from the master. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Default setting of 2301 equals SpeedRef (23.01). Int. Scaling: $1==1 \quad$ Type: I Volatile: N	-			山
70.20	Ch2 FolSig3 (channel 2 follower signal 3) Follower signal 3 receives via channel 2 the $3^{\text {rd }}$ value of dataset 41 from the master. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 2501 equals TorqRefA (25.01). Int. Scaling: $1=\mathbf{1}$ Type: Volatile: N	-			ш
70.21	Ch3 HW Config (channel 3 hardware configuration) CHO HW Config (70.06) is used to enable / disable the regeneration of the Channel 3 optotransmitters. Regeneration means that the drive echoes all messages back. $0=$ Ring Regeneration is enabled. Used with ring-type bus topology. 1 = Star Regeneration is disabled. Used with star-type topology. Typically with configurations using the NDBU-x5 branching units, default Note1: This parameter has no effect in DriveBus mode [Ch0 DriveBus (71.01) = Yes]. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}	이듣			山
70.22	Ch3 NodeAddr (channel 3 node address) Channel 3 is used for communication with start-up and maintenance tools (e.g. DriveWindow). If several drives are connected together via channel 3 , each of them must be set to a unique node address. Node address channel 3: $0, \ldots, 75$ valid node address for SDCS-COM-8 $76, \ldots, 124$ reserved node address for NDBU-x5 branching units $125, \ldots, 254$ valid node address for SDCS-COM-8 Attention: A new node address becomes only valid after the next SDCS-COM-8 power-up. Int. Scaling: $1==1$ Type: Volatile: N	\checkmark	N		ш
70.23	Ch3 LinkControl (channel 3 link control) DDCS channel 3 intensity control for transmission LEDs. This value is adjusted by the link including each device on the link. This parameter can be used in special cases to optimize the communication performance of the link. Int. Scaling: $1==1$ Type: Volatile: N	-	10		ш
70.24	Ch0 DsetBaseAddr (channel 0 dataset base address) Dataset number of the $1^{\text {st }}$ dataset used for the communication with the overriding control system (e.g. field bus adapters, Advant controllers). The dataset addressed by Ch0 DsetBaseAddr(70.24) is the $1^{\text {st }}$ dataset send from the overriding control to the drive, while the next dataset is the $1^{\text {st }}$ one send from the drive to the overriding control and so on. Up to 8 datasets for each direction are supported (addressing of the data sets see groups 90 to 93). Examples: Note1: $\begin{array}{lll} \text { - } \quad \text { ChO DsetBaseAddr(70.24) }=1 & & \text { dataset range 1, ..., } 16 \\ \text { - } \quad \text { ChO DsetBaseAddr(70.24) }=10 & & \text { dataset range 10, .., } 25 \end{array}$ The datasets for the APC-mailbox function (32 and 33) as well as for the master-follower communication (41) are not programmable. Int. Scaling: $1==1$ Type: Volatile: \mathbf{N}	-	$\stackrel{\square}{6}$		ш

Index	Signal / Parameter name		
$\begin{aligned} & \text { ㄱ } \\ & \text { 을 } \\ & \text { O} \\ & \text { OU } \end{aligned}$	Drivebus		
71.01	Ch0 DriveBus (channel 0 drive bus) Communication mode selection for channel 0 . The DriveBus mode is used with the AC80 and AC 800M controllers. $\begin{array}{ll} 0=\text { No } & \text { DDCS mode } \\ 1=\text { Yes } & \text { DriveBus mode, default } \end{array}$ Attention: A new mode becomes only valid after the next SDCS-COM-8 power-up. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		ш
$\begin{aligned} & \infty \\ & \text { © } \\ & \text { 을 } \\ & \text { O} \\ & \hline \mathbf{U} \end{aligned}$	Adaptive program control		
83.01	AdapProgCmd (Adaptive Program command) Selects the operation mode for the adaptive Program: $0=$ Stop \quad stop, the Adaptive Program is not running and cannot be edited, default 1 = Start running, the Adaptive Program is running and cannot be edited 2 = Edit edit, the Adaptive Program is not running and can be edited 3 = SingleCycle The Adaptive Program runs only once. If a breakpoint is set with BreakPoint (83.06) the Adaptive Program will stop before the breakpoint. After the SingleCycle AdapProgCmd (83.01) is automatically set back to Stop. 4 = SingleStep Runs only one function block. LocationCounter (84.03) shows the function block number, which will be executed during the next SingleStep. After a SingleStep AdapProgCmd (83.01) is automatically set back to Stop. LocationCounter (84.03) shows the next function block to be executed. To reset LocationCounter (84.03) to the first function block set AdapProgCmd (83.01) to Stop again (even if it is already set to Stop). A136 NoAPTaskTime [AlarmWord3 (9.08) bit 3] is set when TimeLevSel (83.04) is not set to 5ms, $\mathbf{2 0 m s}, \mathbf{1 0 0 m s}$ or $\mathbf{5 0 0 m s}$ but AdapProgCmd (83.01) is set to Start, SingleCycle or SingleStep Note1: AdapProgCmd (83.01) = Start, SingleCycle or SingleStep is only valid, if AdapPrgStat (84.01) $=$ Running. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		ш

Index	Signal / Parameter name			
$\begin{aligned} & \text { Z } \\ & \text { O} \\ & \frac{0}{3} \\ & \text { OU } \end{aligned}$	Adaptive program			
84.01				
84.02	FaultedPar (faulted parameters) The Adaptive Program will be checked before running. If there is a fault, AdapPrgStat (84.01) is set to "faulty" and FaultedPar (84.02) shows the faulty input. Note1: In case of a problem check the value and the attribute of the faulty input. Int. Scaling: $1=1 \quad$ Type: \quad Volatile: Y			
84.03	LocationCounter (location counter) Location counter for AdapProgCmd (83.01) = SingleStep shows the function block number, which will be executed next. Int. Scaling: $1=\mathbf{1}$ Type: Volatile: Y			

Index	Signal / Parameter name		=
84.04	Block1Type (function block 1 type) Selects the type for function block 1 [Block Parameter Set 1 (BPS1)]. Detailed description of the type can be found in chapter 'Function blocks': 0 = NotUsed 1 = ABS $2=$ ADD 3 = AND 4 = Bitwise 5 = Bset 6 = Compare 7 = Count 8 = D-Pot 9 = Event 10 = Filter 11 = Limit $12=$ MaskSet $13=$ Max 14 = Min $15=$ MulDiv $16=\mathbf{O R}$ 17 = ParRead 18 = ParWrite $19=\mathbf{P I}$ 20 = PI-Bal 21 = Ramp $22=$ SqWav 23 = SR 24 = Switch-B $25=$ Switch-I $26=$ TOFF $27=$ TON $28=$ Trigg $29=$ XOR $30=$ Sqrt function block is not used absolute value sum AND bit compare bit set compare counter ramp event filter limit mask set maximum minimum multiplication and division OR parameter read parameter write PI-controller initialization for PI-controller ramp square wave SR flip-flop switch Boolean switch integer timer off timer on trigger exclusive OR square root Type:		山
84.05	Block1 $\ln 1$ (function block 1 input 1) Selects the source for input 1 of function block 1 (BPS1). There are 2 types of inputs, signals/parameters and constants: - Signals/parameters are all signals and parameters available in the drive. The format is $\mathbf{x x y y}$, with: $-=$ negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Example: To connect negated SpeedRef (23.01) set Block1In1 (84.05) = -2301 and Block1Attrib $(84.08)=0 h$. To get only a certain bit e.g. RdyRef bit 3 of MainStatWord (8.01) set Block1In1 (84.05) = 801 and Block1Attrib (84.08) $=3 \mathrm{~h}$. - Constants are feed directly into the function block input and have to be declared by means of Block1Attrib (84.08). Example: To connect the constant value of 12345 set Block1ln1 (84.05) = 12345 and Block1Attrib $(84.08)=1000 \mathrm{~h}$. Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: \mathbf{N}	(1)	ш

Index	Signal / Parameter name												
84.06	Block1In2 (function block 1 input 2) Selects the source for input 2 of function block 1 (BPS1). Description see Block1In1 (84.05), except: Example: To get only a certain bit e.g. RdyRef bit 3 of MainStatWord (8.01) set Block1/n2 (84.06) $=801$ and Block1Attrib (84.08) $=30 \mathrm{~h}$. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}												ш
84.07	Block1In3 (function block 1 input 3) Selects the source for input 2 of function block 1 (BPS1). Description see Block1/n1 (84.05), except: Example: To get only a certain bit e.g. RdyRef bit 3 of MainStatWord (8.01) set Block1In3 (84.07) = 801 and Block1Attrib (84.08) = 300h. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}												ш
84.08	Block1Attrib (function block 1 attribute) Defines the attributes of function block 1 for all three inputs [B and Block1In3 (84.07)] (BPS1). Block1Attrib (84.08) is divided into 4 parts: - Bit number 0-3 for input 1 to get a certain bit out of - Bit number 4-7 for input 2 to get a certain bit out of - Bit number 8-11 for input 3 to get a certain bit out o - Bit number 12-14 for input 1-3 to feed a constant							lock1In1 a packed a packed f a pack directly in		氐			ш
84.09	Int. Scaling: $\mathbf{1 = = 1}$ Type: \quad h \quad Volatile: \mathbf{N} Block1Output (function block $\mathbf{1}$ output) Function block 1 output, can be used as an input for further function blocks. Int. Scaling: $\mathbf{1 = = 1} \quad$ Type: \quad SI												ш

Index	Signal / Parameter name												
$\begin{gathered} 84.10 \\ \text { to } \\ 84.99 \end{gathered}$	The description of the parameters for function blocks 2 to 16 is basically the same as for function block 1. For Your convenience the following table shows the parameter numbers of all function blocks1:											ш	
	Function block	BlockxType	BlockxIn1 input 1	BlockxIn2 input 2	BlockxIn3 input 1	BlockxAttrib	BlockxOutput signal	BlockxOut pointer					
	1	84.04	84.05	84.06	84.07	84.08	84.09	86.01					
	2	84.10	84.11	84.12	84.13	84.14	84.15	86.02					
	3	84.16	84.17	84.18	84.19	84.20	84.21	86.03					
	4 5	84.22	84.23 84.29	84.24	84.25	84.26	84.27	86.04					
	6	84.34	84.35	84.36	84.37	84.38	84.39	86.06					
	7	84.40	84.41	84.42	84.43	84.44	84.45	86.07					
	8	84.46	84.47	84.48	84.49	84.50	84.51	86.08					
	9	84.52	84.53	84.54	84.55	84.56	84.57	86.09					
	10	84.58	84.59	84.60	84.61	84.62	84.63	86.10					
	11	84.64	84.65	84.66	84.67	84.68	84.69	86.11					
	12	84.70	84.71	84.72	84.73	84.74	84.75	86.12					
	13	84.76	84.77	84.78	84.79	84.80	84.81	86.13					
	14	84.82	84.83	84.84	84.85	84.86	84.87	86.14					
	15	84.88	84.89	84.90	84.91	84.92	84.93	86.15					
	16	84.94	84.95	84.96	84.97	84.98	84.99	86.16					
10 0 0 0 0 0 $\mathbf{0}$	User constants												
85.01	Constant1 (constant 1) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}									(10\|c			ш
85.02	Constant2 (constant 2) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}									cor		ш	
85.03	Constant3 (constant 3) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1$ Type: SI Volatile: N									cos		ш	
85.04	Constant4 (constant 4) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1$ Type: SI Volatile: N									cos		ш	
85.05	Constant5 (constant 5) Sets an integer constant for the Adaptive Program. Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}									cocos		ш	
85.06	Constant6 (constant 6) Sets an integer constant for the Adaptive Program. Int. Scaling: 1 == 1 Type: SI Volatile: N									cos		ш	
85.07	Constant7 (constant 7) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1$ Type: SI Volatile: N									(c)		ш	

Index	Signal / Parameter name	¢	:
85.08	Constant8 (constant 8) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{N}		ш
85.09	Constant9 (constant 9) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1$ Type: SI Volatile: N		ш
85.10	Constant10 (constant 10) Sets an integer constant for the Adaptive Program. Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: N	$\begin{array}{lll} 0 & N \\ 0 & 0 \\ \stackrel{0}{\mathrm{~N}} & 0 \\ \mathbf{N} & \end{array}$	ш
85.11	String1 (string 1) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the control panel and in DriveWindow. Int. Scaling: $1==1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		ш
85.12	String2 (string 2) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the control panel and in DriveWindow. Int. Scaling: $1=\mathbf{= 1} \quad$ Type: SI/C Volatile: N	喪页:	ш
85.13	String3 (string 3) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the control panel and in DriveWindow. Int. Scaling: $1==1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}	\%	ш
85.14	String4 (string 4) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the control panel and in DriveWindow. Int. Scaling: $1==1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		ш
85.15	String5 (string 5) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the control panel and in DriveWindow. Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI/C Volatile: \mathbf{N}	\%	ш
$\begin{aligned} & 0 \\ & \infty \\ & \text { 을 } \\ & 0 \\ & \vdots \\ & \hline \mathbf{U} \end{aligned}$	Adaptive program outputs		
86.01	Block1Out (block 1 output) The value of function block 1 output [Block1Output (84.09)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		ш

Index	Signal / Parameter name				
86.02	Block2Out (block 2 output) The value of function block 2 output [Block2Output (84.15)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		-		ш
86.03	Block3Out (block 3 output) The value of function block 3 output [Block3Output (84.21)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}				ш
86.04	Block4Out (block 4 output) The value of function block 4 output [Block1Output (84.27)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}				ш
86.05	Block5Out (block 5 output) The value of function block 5 output [Block1Output (84.33)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}				ш
86.06	Block6Out (block 6 output) The value of function block 6 output [Block1Output (84.39)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}				ш
86.07	Block7Out (block 7 output) The value of function block 7 output [Block1Output (84.45)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}				ш
86.08	Block8Out (block 8 output) The value of function block 8 output [Block1Output (84.51)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}				ш
86.09	Block9Out (block 9 output) The value of function block 9 output [Block1Output (84.57)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}				ш
86.10	Block10Out (block 10 output) The value of function block 10 output [Block1Output (84.63)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}				ш
86.11	Block11Out (block 11 output) The value of function block 11 output [Block1Output (84.69)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}				ш

Index	Signal / Parameter name			\%	0	${ }_{5}$
86.12	Block12Out (block 12 output) The value of function block 12 output [Block1Output (84.75)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
86.13	Block13Out (block 13 output) The value of function block 13 output [Block1Output (84.81)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
86.14	Block14Out (block 14 output) The value of function block 14 output [Block1Output (84.87)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}					ш
86.15	Block15Out (block 15 output) The value of function block 15 output [Block1Output (84.93)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
86.16	Block16Out (block 16 output) The value of function block 16 output [Block16Output (84.99)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)]. The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		8			ш
$\begin{aligned} & 8 \\ & \frac{0}{3} \\ & \frac{0}{3} \\ & \frac{0}{U} \end{aligned}$	Receiving datasets addresses 1					
	Addresses for the received data transmitted from the overriding control to the drive. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. The dataset base address is set in Ch0 DsetBaseAddr (70.24).					
90.01	DsetXVal1 (dataset X value 1) Dataset X value 1 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24). Default setting of 701 equals MainCtrlWord (7.01). Int. Scaling: 1==1 Type: I Volatile: N					ш
90.02	DsetXVal2 (dataset X value 2) Dataset X value 2 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24). Default setting of 2301 equals SpeedRef (23.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
90.03	DsetXVal3 (dataset X value 3) Dataset X value 2 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24). Default setting of 2501 equals TorqRefA (25.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
90.04	DsetXplus2Val1 (dataset X+2 value 1) Dataset $\mathrm{X}+2$ value 1 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 2 . Default setting of 702 equals AuxCtrlWord (7.02). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}			8		ш

Index	Signal / Parameter name	官	=
90.05	DsetXplus2Val2 (dataset X+2 value 2) Dataset $\mathrm{X}+2$ value 2 (interval: 2 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 2 . Default setting of 703 equals AuxCtrlWord2 (7.03). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-	ш
90.06	DsetXplus2Val3 (dataset X+2 value 3) Dataset $\mathrm{X}+2$ value 3 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 2. Int. Scaling: $1=1 \quad$ Type: $1 \quad$ Volatile: N		ш
90.07	DsetXplus4Val1 (dataset $\mathrm{X}+4$ value 1) Dataset $X+4$ value 1 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +4 . Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N		ш
90.08	DsetXplus4Val2 (dataset $X+4$ value 2) Dataset $X+4$ value 2 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +4 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N		ш
90.09	DsetXplus4Val3 (dataset $\mathrm{X}+4$ value 3) Dataset $X+4$ value 3 (interval: 10 ms). Dataset address = Ch0 DsetBaseAddr(70.24) + 4 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		ш
90.10	DsetXplus6Val1 (dataset X+6 value 1) Dataset $X+6$ value 1 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +6. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		ш
90.11	DsetXplus6Val2 (dataset X+6 value 2) Dataset $X+6$ value 2 (interval: 10 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 6. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N		ш
90.12	DsetXplus6Val3 (dataset X+6 value 3) Dataset $X+6$ value 3 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +6. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		ш
90.13	DsetXplus8Val1 (dataset $\mathrm{X}+8$ value 1) Dataset $\mathrm{X}+8$ value 1 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +8. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N		ш
90.14	DsetXplus8Val2 (dataset X+8 value 2) Dataset $\mathrm{x}+8$ value 2 (interval: 10 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 8 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	0	ш
90.15	DsetXplus8Val3 (dataset X+8 value 3) Dataset $\mathrm{X}+8$ value 3 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +8 . Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N		ш
90.16	DsetXplus10Val1 (dataset $\mathrm{X}+10$ value 1) Dataset $\mathrm{X}+10$ value 1 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 10. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N		ш

Index	Signal / Parameter name		(ty
90.17	DsetXplus10Val2 (dataset $X+10$ value 2) Dataset $\mathrm{X}+10$ value 2 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 10. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	$\bigcirc 0$	' \quad -
90.18	DsetXplus10Val3 (dataset $\mathrm{X}+10$ value 3) Dataset $\mathrm{X}+10$ value 3 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 10. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	$\bigcirc 0$	' \quad -
	Receiving datasets addresses 2		
	Addresses for the received data transmitted from the overriding control to the drive. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. The dataset base address is set in Ch0 DsetBaseAddr(70.24).		
91.01	DsetXplus12Val1 (dataset $\mathrm{X}+12$ value 1) Dataset $\mathrm{X}+12$ value 1 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 12. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	0	' \quad +
91.02	```DsetXplus12Val2 (dataset X+12 value 2) Dataset X+12 value 2 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + }12 Int. Scaling: 1==1 Type: I Volatile: N```	0	' \quad -
91.03	DsetXplus12Val3 (dataset $\mathrm{X}+12$ value 3) Dataset $\mathrm{X}+12$ value 2 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 12. Int. Scaling: $1=1 \quad$ Type: $\quad 1 \quad$ Volatile: \mathbf{N}	$0 \text { 옹 }$	' \quad
91.04	DsetXplus14Val1 (dataset $\mathrm{X}+14$ value 1) Dataset $\mathrm{X}+14$ value 1 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 14 . Int. Scaling: $1=1 \quad$ Type: $\quad 1 \quad$ Volatile: \mathbf{N}	$0 \text { 웅 }$, ш
91.05	DsetXplus14Val2 (dataset $X+14$ value 2) Dataset $\mathrm{X}+14$ value 2 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 14. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N	$0 \text { 웅 }$. \quad.
91.06	DsetXplus14Val3 (dataset $\mathrm{X}+14$ value 3) Dataset $\mathrm{X}+14$ value 3 (interval: 50 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 14. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	$$	-
N \% 을 O O	Transmit datasets addresses 1		
	Addresses for the transmit data send from the drive to the overriding control. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. The dataset base address is set in Ch0 DsetBaseAddr(70.24).		

Index	Signal / Parameter name		$\stackrel{\times}{\text { a }}$		
92.01	DsetXplus1Val1 (dataset $\mathrm{X}+1$ value 1) Dataset $\mathrm{X}+1$ value 1 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 1 . Default setting of 801 equals MainStatWord (8.01). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}			$8{ }^{8}$	ш
92.02	DsetXplus1 Val2 (dataset $\mathrm{X}+1$ value 2) Dataset $\mathrm{X}+1$ value 2 (interval: 2 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 1 . Default setting of 104 equals MotSpeed (1.04). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	-		8) ${ }_{8}^{8}$	ш
92.03	DsetXplus1Val3 (dataset X+1 value 3) Dataset $\mathrm{X}+1$ value 3 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 1 . Default setting of 209 equals TorqRef2 (2.09). Int. Scaling: $1=1 \quad$ Type: \quad Volatile: \mathbf{N}	-		8, ${ }_{8}^{8}$	ш
92.04	DsetXplus3Val1 (dataset X+3 value 1) Dataset $\mathrm{X}+3$ value 1 (interval: 2 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 3 . Default setting of 802 equals AuxStatWord (8.02). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-		웅	ш
92.05	DsetXplus3Val2 (dataset X+3 value 2) Dataset $\mathrm{X}+3$ value 2 (interval: 2 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 3 . Default setting of 101 equals MotSpeedFilt (1.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}			8\%	ш
92.06	DsetXplus3Val3 (dataset X+3 value 3) Dataset $\mathrm{X}+3$ value 3 (interval: 2 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 3 . Default setting of 108 equals MotTorq (1.08). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}			응ㅇㅇ	ш
92.07	DsetXplus5Val1 (dataset X+5 value 1) Dataset $\mathrm{X}+5$ value 1 (interval: 10 ms). Dataset address = Ch0 DsetBaseAddr (70.24) + 5 . Default setting of 901 equals FaultWord1 (9.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N			$8{ }_{8}{ }^{\circ}$	ш
92.08	DsetXplus5Val2 (dataset X+5 value 2) Dataset $\mathrm{X}+5$ value 2 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 5 . Default setting of 902 equals FaultWord2 (9.02). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N			앙ㅇ	ш
92.09	DsetXplus5Val3 (dataset X+5 value 3) Dataset $\mathrm{X}+5$ value 3 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 5 . Default setting of 903 equals FaultWord3 (9.03). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N			\% ${ }_{\text {O }}^{6}$	ш
92.10	DsetXplus7Val1 (dataset X+7 value 1) Dataset $\mathrm{X}+7$ value 1 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +7 . Default setting of 904 equals FaultWord4 (9.04). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N			-3	ш
92.11	DsetXplus7Val2 (dataset $X+7$ value 2) Dataset $\mathrm{X}+7$ value 2 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) +7 . Default setting of 906 equals AlarmWord1 (9.06). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N			\% ${ }_{6} 8$	ш
92.12	DsetXplus7Val3 (dataset $\mathrm{X}+7$ value 3) Dataset $\mathrm{X}+7$ value 3 (interval: 10 ms). Dataset address $=$ Ch0 DsetBaseAddr (70.24) + 7 . Default setting of 907 equals AlarmWord2 (9.07). Int. Scaling: $1=1 \quad$ Type: \quad Volatile: \mathbf{N}			8	ш

Index	Signal / Parameter name			.	\% 0	5
	Example 2: 12-pulse configuration 12-pulse master drive $\begin{aligned} \text { P94.01 } & =1 \\ \text { P94.04 } & =31 \\ \text { P94.08 } & =21 \end{aligned}$	12-pulse slave drive P94.01= 31 $1{ }^{\text {st }}$ excitation P94.01 $=21$				
	Example 3: Master-follower configuratio	roadcast) $1^{\text {st }}$ follower drive P94.01 $=2$ P94.08 $=22$ $2^{\text {nd }}$ follower drive P94.01 $=3$ P94.08 $=23$ $10^{\text {th }}$ follower drive P94.01 $=11$ P94. $08=31$	$1^{\text {st }}$ excitation P94.01 = 22 $1^{\text {st }}$ excitation P94.01 = 23 $1^{\text {st }}$ excitation P94.01 = 31			

Index	Signal / Parameter name		
	Example 4: Two 12-pulse drives in master-follower configuration		
	Example 5: Drive-to-drive configuration		
94.01	DCSLinkNodeID (DCSLink node ID) Defines the DCSLink node ID of the station. Two stations with the same node ID are not allowed. Maximum allowed station count is 50 . See also examples 1 to 5 above. The DCSLink node ID is inactive, if DCSLinkNodeID (94.01) is set to 0. The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the SDCS-DSL-4 board is chosen, but not connected or faulty. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	$\bigcirc 0$	ш

Index	Signal / Parameter name	绽		0
	Example 6: Drive-to-drive configuration, sending signals from drive 2 using MailBox3 (94.24) to drive 3 using MailBox3 (94.24) by means of 5 to transmit data and -5 to receive data.			
	Example 7: Master-follower configuration; send TorqRef3 (2.10) from the master drive via MailBox1 (94.12) to TorqRefA (25.01) of the followers via MailBox2 (94.18).			

Index	Signal / Parameter name		$\stackrel{\times}{\square}$		
94.12	MailBox1 (mailbox 1 node ID) Mailbox 1 can transmit / receive up to 4 values [TrmtRecVal1.1 (94.13), TrmtRecVal1.2 (94.14), TrmtRecVal1.3 (94.15) and TrmtRecVal1.4 (94.16)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox1 (94.12) is set to 0. Int. Scaling: $1==1$ Type: Volatile: N		¢ 0		ш
94.13	MailBoxCycle1 (cycle time mailbox 1) The function of MailBoxCycle1 (94.13) is depending on MailBox1 (94.12). MailBox1 (94.12) is positive (== transmit data): Communication cycle time, sets the communication interval. The communication is inactive, if MailBoxCycle1 (94.13) is set to 0 ms . MailBox1 (94.12) is negative (== receive data): Communication timeout, the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. The communication fault and alarm are inactive, if MailBoxCycle1 (94.13) is set to 0 ms . Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		응앙	8	¢ -
94.14	TrmtRecVal1.1 (mailbox 1 transmit / receive value 1) Mailbox 1 transmit / receive value 1. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N		\% 0		ш
94.15	TrmtRecVal1.2 (mailbox 1 transmit / receive value 2) Mailbox 1 transmit / receive value 2 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		\% 0		ш
94.16	TrmtRecVal1.3 (mailbox 1 transmit / receive value 3) Mailbox 1 transmit / receive value 3 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: I Volatile: N		\% 0		ш
94.17	TrmtRecVal1.4 (mailbox 1 transmit / receive value 4) Mailbox 1 transmit / receive value 4. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N		\% 0		ш
94.18	MailBox2 (mailbox 2 node ID) Mailbox 2 can transmit / receive up to 4 values [TrmtRecVal2.1 (94.20), TrmtRecVal2.2 (94.21), TrmtRecVal2.3 (94.22) and TrmtRecVal2.4 (94.23)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox2 (94.18) is set to 0. Int. Scaling: $1==1$ Type: Volatile: N		\% 0		- ш
94.19	MailBoxCycle2 (cycle time mailbox 2) The function of MailBoxCycle2 (94.19) is depending on MailBox2 (94.18). MailBox2 (94.18) is positive (== transmit data): Communication cycle time, sets the communication interval. The communication is inactive, if MailBoxCycle2 (94.19) is set to 0 ms . MailBox2 (94.18) is negative ($==$ receive data): Communication timeout, the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. The communication fault and alarm are inactive, if MailBoxCycle2 (94.18) is set to 0 ms . Int. Scaling: $1=\mathbf{1 m s}$ Type: Volatile: N		응ㅇㅇㅇ	$\stackrel{\square}{8}$	8

Index	Signal / Parameter name			岡	-	${ }^{\circ}$
94.20	TrmtRecVal2.1 (mailbox 2 transmit / receive value 1) Mailbox 2 transmit / receive value 1 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N					ш
94.21	TrmtRecVal2.2 (mailbox 2 transmit / receive value 2) Mailbox 2 transmit / receive value 2. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N					ш
94.22	TrmtRecVal2.3 (mailbox 2 transmit / receive value 3) Mailbox 2 transmit / receive value 3 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N					ш
94.23	TrmtRecVal2.4 (mailbox 2 transmit / receive value 4) Mailbox 2 transmit / receive value 4. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N					ш
94.24	MailBox3 (mailbox 3 node ID) Mailbox 3 can transmit / receive up to 4 values [TrmtRecVal3.1 (94.26), TrmtRecVal3.2 (94.27), TrmtRecVal3.3 (94.28) and TrmtRecVal3.4 (94.29)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox3 (94.24) is set to 0 . Int. Scaling: $1==1$ Type: Volatile: N					ш
94.25	MailBoxCycle3 (cycle time mailbox 3) The function of MailBoxCycle3 (94.25) is depending on MailBox3 (94.24). MailBox3 (94.24) is positive (== transmit data): Communication cycle time, sets the communication interval. The communication is inactive, if MailBoxCycle3 (94.25) is set to 0 ms . MailBox3 (94.24) is negative (== receive data): Communication timeout, the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. The communication fault and alarm are inactive, if MailBoxCycle3 (94.25) is set to 0 ms . Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: N				\&	¢
94.26	TrmtRecVal3.1 (mailbox 3 transmit / receive value 1) Mailbox 3 transmit / receive value 1 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
94.27	TrmtRecVal3.2 (mailbox 3 transmit / receive value 2) Mailbox 3 transmit / receive value 2. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
94.28	TrmtRecVal3.3 (mailbox 3 transmit / receive value 3) Mailbox 3 transmit / receive value 3 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
94.29	TrmtRecVal3.4 (mailbox 3 transmit / receive value 4) Mailbox 3 transmit / receive value 4. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш

Index	Signal / Parameter name		$\stackrel{\times}{\square}$	E	
94.30	MailBox4 (mailbox 4 node ID) Mailbox 4 can transmit / receive up to 4 values [TrmtRecVal4.1 (94.32), TrmtRecVal4.2 (94.33), TrmtRecVal4.3 (94.34) and TrmtRecVal4.4 (94.35)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox4 (94.30) is set to 0. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		¢ 0		ш
94.31	MailBoxCycle4 (cycle time mailbox 4) The function of MailBoxCycle4 (94.31) is depending on MailBox4 (94.30). MailBox4 (94.30) is positive ($==$ transmit data): Communication cycle time, sets the communication interval. The communication is inactive, if MailBoxCycle4 (94.31) is set to 0 ms . MailBox4 (94.30) is negative (== receive data): Communication timeout, the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. The communication fault and alarm are inactive, if MailBoxCycle4 (94.31) is set to 0 ms . Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		$\begin{array}{ll} 8 & 8 \\ 0 \\ y & 0 \\ \hline \end{array}$	¢	-
94.32	TrmtRecVal4.1 (mailbox 4 transmit / receive value 1) Mailbox 4 transmit / receive value 1 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: I Volatile: \mathbf{N}		(\%)		ш
94.33	TrmtRecVal4.2 (mailbox 4 transmit / receive value 2) Mailbox 4 transmit / receive value 2 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N		8°		ш
94.34	TrmtRecVal4.3 (mailbox 4 transmit / receive value 3) Mailbox 4 transmit / receive value 3 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N		(\%)		ш
94.35	TrmtRecVal4.4 (mailbox 4 transmit / receive value 4) Mailbox 4 transmit / receive value 4 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N		-		ш

Index	Signal / Parameter name					
97.03	S ConvScaleVolt (set: converter voltage scaling) Adjustment of voltage measuring channels (SDCS-PIN-4 or SDCS-PIN-51). S ConvScaleVolt (97.03) is write protected, unless ServiceMode (99.06) = SetTypeCode: $\begin{array}{ll} \mathbf{0 V}= & \text { take value from TypeCode (97.01) } \\ \mathbf{1} \text { V to } 2000 \mathrm{~V}= & \text { take value from S ConvScaleVolt (97.03) } \end{array}$ This value overrides the type code. The new value is taken over and visible in ConvNomVolt (4.04) after the next power up. Int. Scaling: $1==1 \mathrm{~V}$ Type: I Volatile: \mathbf{N}		-			>
97.04	S MaxBrdgTemp (set: maximum bridge temperature) Adjustment of the converters heat sink temperature tripping level in degree centigrade: $\mathbf{0}^{\circ} \mathrm{C}=\quad \text { take value from TypeCode (97.01) }$ $1^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}=$ take value from S MaxBrdgTemp (97.04) This value overrides the type code and is immediately visible in MaxBridgeTemp (4.17). Note1: Maximum bridge temperature for converters size D6 and D7 is $50^{\circ} \mathrm{C}$. Int. Scaling: $1==1^{\circ} \mathrm{C}$ Type: I Volatile: \mathbf{N}	\bigcirc			0	-
97.05	ConvTempDly (converter temperature delay) Instead of measuring the converter temperature it is possible to measure the converter fan current by means of the PW-1002/3 board. ConvTempDly (97.05) avoids false fault messages during the fan acceleration: $\mathbf{0 s}=\quad$ Converter temperature measurement is released. The drive trips with F504 ConvOverTemp [FaultWord1 (9.01) bit 4] in case of excessive converter temperature. $\mathbf{1 s}$ to $\mathbf{3 0 0} \mathbf{s}=$ Converter fan current measurement is released when the drive is in On state [UsedMCW (7.04) bit 0 On = 1]. The drive trips with F511 ConvFanCur [FaultWord1 (9.01) bit 10] in case of missing or excessive converter fan current, after ConvTempDly (97.05) is elapsed. Int. Scaling: $1==1 \mathrm{~s}$ Type: Volatile: N					¢
97.06	Unused					
97.07	S BlockBridge2 (set: block bridge 2) Bridge 2 can be blocked: $0=$ Auto \quad operation mode is taken from TypeCode (97.01), default 1 = BlockBridge2 block bridge 2 (== 2-Q operation) $2=$ RelBridge2 release bridge 2 ($==4-Q$ operation) This value overrides the type code and is immediately visible in QuadrantType (4.15). Int. Scaling: $1==1$ Type: C Volatile: N					ш
97.08	Unused					
97.09	MainsCompTime (mains compensation time) Mains voltage compensation filter time constant. Is used for the mains voltage compensation at the current controller output. Setting MainsCompTime (97.09) to 1000 ms disables the mains voltage compensation. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}					
97.10	Unused					
97.11	Unused					

Index	Signal / Parameter name				
97.12	CompUkPLL (phase locked loop to compensate for uk) The measured phase angle of the firing unit's PLL can be corrected in order to compensate the error caused by the commutation related voltage drops. The compensation depends on the uk (short circuit voltage) of the mains. CompUkPLL (97.12) defines the mains short circuit voltage - in percent of NomMainsVolt (99.10) which is caused by the converter's nominal current for the PLL correction: $\text { CompUkPLL }=u k * \frac{S_{c}}{S_{t}} * 100 \%$ with: $\quad u k=$ related mains short circuit voltage, $S_{c}=$ apparent power of converter and $\mathrm{S}_{\mathrm{t}}=$ apparent power of transformer Commissioning hint: CompUkPLL (97.12) is used to compensate for measurement faults of the mains due to commutation notches, in case the mains are measured on the secondary side of the dedicated transformer. The whole situation leads to unstable armature current during high motor loads. Increase CompUkPLL (97.12) slowly (1 by 1) until the armature current becomes stable. Int. Scaling: $10=1 \%$ Type: Volatile: N	\bigcirc			$\bigcirc{ }^{\circ}$
97.13	DevLimPLL (phase locked loop deviation limit) Maximum allowed deviation of the mains cycle time between two measurements. The drive trips with F514 MainsNotSync [FaultWord1 (9.01) bit 13], if limit is overshot: - for 50 Hz mains is valid: $360^{\circ}==20 \mathrm{~ms}=\frac{1}{50 \mathrm{~Hz}}$ - for 60 Hz mains is valid: $360^{\circ}==16.67 \mathrm{~ms}=\frac{1}{60 \mathrm{~Hz}}$ Int. Scaling: $100=1^{\circ}$ Type: I Volatile: N	\checkmark			ш
97.14	KpPLL (phase locked loop p-part) Gain of firing unit's phase lock loop. Int. Scaling: $100=1 \quad$ Type: \quad I Volatile: N	$\stackrel{\sim}{\sim}$			ш
97.15	Unused				
97.16	AdjIDC (adjust DC current) AdjIDC (97.16) is used to cover drives with different current measuring circuits for bridge 1 and bridge 2. It rescales the measured armature current if bridge2 is active. Int. Scaling: $10=1 \% \quad$ Type: \quad Volatile: N			\bigcirc	
97.17	OffsetIDC (offset DC current measurement) Offset value - in percent of M1NomCur (99.03) - added to the armature current measurement. OffsetIDC (97.17) adjusts ConvCurAct (1.16) and the real armature current. Setting OffsetIDC (97.17) to 0 disables the manual offset. Int. Scaling: $100=\mathbf{1 \%}$ Type: I Volatile: N	$\stackrel{\square}{\square}$			

Index	Signal / Parameter name				
97.19	ZeroCurTimeOut (zero current timeout) After a command to change current direction the opposite current direction has to be reached before ZeroCurTimeOut (97.19) plus RevDly (43.14) has been elapsed otherwise the drive trips with F533 ReversalTime [FaultWord3 (9.03) bit 0]. The reversal delay time starts when zero current has been detected, after a command to change current direction has been given. ZeroCurTimeOut (97.19) must have the same setting for 12-pulse master and 12-pulse slave with one exception only: - If there is no current measurement in the 12-pulse serial slave [OperModeSel (43.01)= 12PserSlave], set ZeroCurTimeOut (97.19) in the 12-pulse serial slave to maximum (600 ms). Int. Scaling: $1==1 \mathrm{~ms}$ Type: Volatile: \mathbf{N}		응		
97.20	TorqActFiltTime (actual torque filter time) Torque actual filter time constant for MotTorqFilt (1.07). Is used for the EMF controller and the EMF feed forward. Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}		8		

Index	Signal / Parameter name		=
97.21	```ResetAhCounter (reset ampere hour counter) Binary signal to reset AhCounter (1.39): 0 = NotUsed default 1 = DI1 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 2 = DI2 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 3 = DI3 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 4 = DI4 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) \(5=\) DI5 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 6 = DI6 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 7 = DI7 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 8 = DI8 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\) 9 = DI9 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\), only available with digital extension board \(10=\) DI10 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\), only available with digital extension board \(11=\) DI11 \(\quad\) Reset by rising edge \((0 \rightarrow 1)\), only available with digital extension board 12 = MCW Bit11 Reset by rising edge \((0 \rightarrow 1)\), MainCtrlWord (7.01) bit 11 13 = MCW Bit12 Reset by rising edge (\(0 \rightarrow 1\)), MainCtrlWord (7.01) bit 12 14 = MCW Bit13 Reset by rising edge (\(0 \rightarrow 1\)), MainCtrlWord (7.01) bit 13 15 = MCW Bit14 Reset by rising edge \((0 \rightarrow 1)\), MainCtrlWord (7.01) bit 14 \(16=\) MCW Bit15 Reset by rising edge \((0 \rightarrow 1)\), MainCtrlWord (7.01) bit 15 17 = ACW Bit12 Reset by rising edge (\(0 \rightarrow 1\)), AuxCtrIWord (7.02) bit 12 18 = ACW Bit13 Reset by rising edge \((0 \rightarrow 1)\), AuxCtrIWord (7.02) bit 13 19 = ACW Bit14 Reset by rising edge (\(0 \rightarrow 1\)), AuxCtrIWord (7.02) bit 14 \(20=\) ACW Bit15 Reset by rising edge \((0 \rightarrow 1)\), AuxCtrIWord (7.02) bit 15 Int. Scaling: \(1==1 \quad\) Type: \(\quad\) C Volatile: \(\mathbf{N}\)```		'ய
97.22	Unused		
97.23	AdjUDC (adjust DC voltage) AdjUDC (97.23) is used to cover drives with different voltage measuring circuits for armature and mains voltage. It rescales the armature voltage measurement. Int. Scaling: $10==1 \%$ Type: I Volatile: N	$\stackrel{1}{1}$	- ${ }^{\circ}$ -
97.24	OffsetUDC (offset DC voltage measurement) Offset value - in percent of M1NomVolt (99.02) - added to the armature voltage measurement. OffsetUDC (97.24) adjusts ArmVoltAct (1.14) and the real armature voltage. Setting OffsetUDC (97.24) to 5.1 \% disables the manual offset. Int. Scaling: $100=1 \%$ Type: Volatile: N	안) in	ㅇㅇ
97.25	EMF ActFiltTime (actual EMF filter time) EMF actual filter time constant for EMF VoltActRel (1.17). Is used for the EMF controller and the EMF feed forward. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: N	ㅇㅇㅇㅇㅇㅇ	$\stackrel{6}{6}$
97.26	HW FiltUDC (hardware filter DC voltage) Hardware filter for the UDC measuring circuit: $0=$ FilterOff the filter time is set to $200 \mu \mathrm{~s}$ 1 = FilterOn the filter time is set to 10 ms , default Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		' ${ }^{\text {w }}$
	Option modules		
98.01	Unused		

Index	Signal / Parameter name	-	$\stackrel{0}{0}$	
98.03	DIO ExtModule1 (digital extension module 1) First RDIO-xx extension module interface selection. DIO ExtModule1 (98.03) releases DI9, DI10, DI11, DO9 and DO10. The module can be connected in option slot $1,2,3$ or alternatively onto the external I/O module adapter (AIMA) connected via SDCS-COM-8. The node ID 2 (see switch S1) is only required for connection via AIMA: $0=$ NotUsed no first RDIO-xx is used, default 1 = Slot1 first RDIO-xx is connected in option slot 1 2 = Slot2 first RDIO-xx is connected in option slot 2 3 = Slot3 first RDIO-xx is connected in option slot 3 4 = AMIA first RDIO-xx is connected onto the external I/O module adapter (AIMA), node ID = 2 The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the DIO extension module is chosen, but not connected or faulty. Note1: For faster input signal detection disable the hardware filters of the RDIO-xx by means of dip switch S2. Always have the hardware filter enabled when an AC signal is connected. Note2: The digital outputs are available via DO CtrlWord (7.05). Attention: To ensure proper connection and communication of the RDIO-xx board with the SDCS-CON-4 use the screws included in the scope of delivery. $1^{\text {st }}$ RDIO: Int. Scaling: $1==1$	¢	8 0 0 0 0	ш

Index	Signal / Parameter name	约			0
98.04	DIO ExtModule2 (digital extension module 2) Second RDIO-xx extension module interface selection. DIO ExtModule2 (98.04) releases DI12, DI13, DI14, DO11 and DO12. The module can be connected in option slot 1, 2, 3 or alternatively onto the external I/O module adapter (AIMA) connected via SDCS-COM-8. The node ID 3 (see switch S1) is only required for connection via AIMA: $0=$ NotUsed no second RDIO-xx is used, default 1 = Slot1 second RDIO-xx is connected in option slot 1 2 = Slot2 second RDIO-xx is connected in option slot 2 3 = Slot3 second RDIO-xx is connected in option slot 3 4 = AMIA second RDIO-xx is connected onto the external I/O module adapter (AIMA), node ID = 3 The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the DIO extension module is chosen, but not connected or faulty. Note1: For faster input signal detection disable the hardware filters of the RDIO-xx by means of dip switch S2. Always have the hardware filter enabled when an AC signal is connected. Note2: The digital inputs are available via DI StatWord (8.05) The digital outputs are available via DO CtrIWord (7.05). Attention: To ensure proper connection and communication of the RDIO-xx board with the SDCS-CON-4 use the screws included in the scope of delivery. $2^{\text {nd }}$ RDIO: Int. Scaling: 1 == 1	운			ш
98.05	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{\text { ® }}$		
99.03	M1NomCur (motor 1 nominal current) Motor 1 nominal armature current (DC) from the motor rating plate. If several motors are connected to the drive, enter the total current of all motors. Note1: In 12-pulse parallel mode, this parameter has to be set to the value of the current the converter itself is providing. This is usually 50% of the rated motor current, if one motor is connected. In case 2 motors in parallel are connected it is 100% of one motor's rated current. Note2: In case the converter is used as a 3-phase field exciter use M1NomCur (99.03) to set the nominal field current. Int. Scaling: 1==1A Type: I Volatile: N		O	\varangle	40
99.04	M1BaseSpeed (motor 1 base speed) Motor 1 base speed from the rating plate, usually the field weak point. M1BaseSpeed (99.04) is must be set in the range of: $0.2 \text { to } 1.6 \text { times of SpeedScaleAct (2.29). }$ If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated. Int. Scaling: $10=1 \mathrm{rpm}$ Type: Volatile: N				
99.05	Unused				
99.06	ServiceMode (service mode) ServiceMode (99.06) contains several test modes, auto- and manual tuning procedures. The drive mode is automatically set to NormalMode after an autotuning procedure or after the thyristor diagnosis is finished or failed. In case errors occur during the selected procedure A121 AutotuneFail [AlarmWord2 (9.07) bit 4] is generated. The reason of the error can be seen in Diagnosis (9.11). SetTypeCode is automatically set to NormalMode after the next power up. $0=$ NormalMode normal operating mode depending on OperModeSel (43.01), default 1 = ArmCurAuto autotuning armature current controller 2 = FieldCurAuto autotuning field current controller 3 = EMF FluxAuto autotuning EMF controller and flux linearization 4 = SpdCtrIAuto autotuning speed controller step response 5 = SpdFbAssist test speed feedback 6 = ArmCurMan manual tuning of armature current controller 7 = FieldCurMan manual tuning of field current controller 8 = ThyDiagnosis thyristor diagnosis 9 = FIdRevAssist 10 = SetTypeCode set type code, release for: TypeCode (97.01) S ConvScaleCur (97.02) S ConvScaleVolt (97.03) S M1FldScale (45.20) S M2FIdScale (45.21) The new values will be taken over after the next power up 11 = SpdCtrIMan manual tuning of speed controller step response 12 = EMF Man manual tuning of EMF controller; not implemented jet $13=$ reserved 14 = TachFineTune tacho fine tuning Note1: The reference chain is blocked while ServiceMode (99.06) $=$ NormalMode. Note1: Depending on MotSel (8.09) the field current of motor 1 or motor 2 is tuned. Note2: A 3-phase field exciter cannot be tuned by means of its armature converter. Tune it by setting ServiceMode (99.06) = FieldCurAuto in the 3-phase field exciter itself. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{Y}				0

Index	Signal / Parameter name		층
99.07	AppIRestore (application restore) Setting ApplRestore (99.07) = Yes starts the loading / storing of the macro (preset parameter set) selected by means of App/Macro (99.08). AppIRestore (99.07) is automatically set back to Done after the chosen action is finished: $0=$ Done no action or macro change completed, default $1=$ Yes macro selected with AppIMacro (99.08) will be loaded into the drive Note1: Macro changes are only accepted in Off state [MainStatWord (8.01) bit $1=0$]. Note2: It takes about 2 s , until the new parameter values are active. Int. Scaling: $1=1$ Type: C Volatile: Y	$\begin{array}{lll} 0 \\ \stackrel{0}{0} & \stackrel{0}{>} & 0 \\ 0 & 0 \end{array}$	'0
99.08	AppIMacro (application macro) AppIMacro (99.08) selects the macro (preset parameter sets) to be loaded / stored into the RAM and FLASH. In addition to the preset macros, two user-defined macros (User1 and User2) are available. The operation selected by App/Macro (99.08) is started immediately by setting App/Restore (99.07) = Yes. ApplMacro (99.08) is automatically set back to NotUsed after the chosen action is finished. The selected macro is shown in MacroSel (8.10): $0=$ NotUsed default 1 = Factory load macro factory (default parameter set) into RAM and FLASH 2 = User1Load load macro User1 into RAM and FLASH 3 = User1Save save actual parameter set form RAM into macro User1 4 = User2Load load macro User2 into RAM and FLASH 5 = User2Save save actual parameter set form RAM into macro User2 6 = Standard load macro standard into RAM and FLASH 7 = Man/Const load macro manual / constant speed into RAM and FLASH 8 = Hand/Auto load macro hand (manual) / automatic into RAM and FLASH 9 = Hand/MotPot load macro hand (manual) / motor potentiometer into RAM and FLASH 10 = reserved reserved $11=$ MotPot load macro motor potentiometer into RAM and FLASH $12=$ TorqCtrl Note1: When loading a macro, group 99 is set / reset as well. Note2: If User1 is active AuxStatWord (8.02) bit 3 is set. If User2 is active AuxStatWord (8.02) bit 4 is set. Note3: It is possible to change all preset parameters of a loaded macro. On a macro change or an application restore command of the actual macro the macro depending parameters are restored to the macro's default values. Note4: In case macro User1 or User2 is loaded by means of ParChange (10.10) it is not saved into the FLASH and thus not valid after the next power on. Note5: The DriveWindow backup function only saves the active macro. Thus both macros User1 and User2 must be backed-up separately. Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: \mathbf{Y}		'0
99.09	DeviceNumber (device number) / DeviceName (device name) The user can set a drive number by means of the control panel or DriveWindow Light. With DriveWindow it is possible to fill in a string (name) with a maximum of 12 characters. This name will override the numbers and is shown as well in the control panel and in DriveWindow Note1: With a SDCS-CON-8 parameter (99.09) is named DeviceNumber, otherwise DeviceName. Int. Scaling: $1==1$ Type: I/C Volatile: N	$\bigcirc \bigcirc$	ш

Index	Signal / Parameter name				
99.10	NomMainsVolt (nominal mains voltage) Nominal mains voltage (AC) of the supply. The default and maximum values are preset automatically according to TypeCode (97.01) respectively S ConvScaleVolt (97.03). Absolute max. is 2000 V Int. Scaling: $1==1 \mathrm{~V}$ Type: I Volatile: \mathbf{N}				0
99.11	M1NomFIdCur (motor 1 nominal field current) Motor 1 nominal field current from the motor rating plate. Note1: In case the converter is used as a 3-phase field exciter use M1NomCur (99.03) to set the nominal field current. Int. Scaling: $100=1$ A Type: \quad Volatile: N				0
99.12	M1UsedFexType (motor 1 used field exciter type) Select motor 1 used field exciter type: $0=$ NotUsed \quad no or foreign field exciter connected 1 = OnBoard integrated 2-Q field exciter (for sizes D1 - D4 only), default 2 = FEX-425-Int internal 2-Q 25 A field exciter (for size D5 only) 3 = DCF803-0035 external 2-Q 35 A field exciter used for field currents from 0.3 A to 35 A (terminals X100.1 and X100.3) 4 = DCF803-0050 external 2-Q 50 A field exciter 5 = DCF804-0050 external 4-Q 50 A field exciter 6 = DCF803-0060 external 2-Q 60 A field exciter 7 = DCF804-0060 external 4-Q 60 A field exciter 8 = DCS800-S01 external 2-Q 3-phase field exciter 9 = DCS800-S02 external 4-Q 3-phase field exciter $10=$ reserved to 19 = reserved $20=$ FEX-4-Term5A external 2-Q 35 A field exciter used for field currents from 0.3 A to 5 A (terminals X100.2 and X100.3) $21=$ reserved If the fex type is changed its new value is taken over after the next power-up. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}				0
99.13	Unused				
99.14	Unused				
99.15	Pot1 (potentiometer 1) Constant test reference 1 for the manual tuning functions - see AppIMacro (99.08) - and the square wave generator. Note1: The value is depending on the chosen destination of the square wave [e.g. SqrWaveIndex (99.18) $=2301$ relates to SpeedScaleAct (2.29)]: - 100% voltage $==10000$ - 100% current $==10000$ - 100% torque $==10000$ - 100% speed $==$ SpeedScaleAct (2.29) $==20000$ Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}				ш

Index	Signal / Parameter name				
99.16	Pot2 (potentiometer 2) Constant test reference 2 for the manual tuning functions - see App/Macro (99.08) - and the square wave generator. Note1: The value is depending on the chosen destination of the square wave [e.g. SqrWaveIndex (99.18) $=2301$ relates to SpeedScaleAct (2.29)]: - 100% voltage $==10000$ - 100% current $==10000$ - 100% torque $==10000$ - 100% speed $==$ SpeedScaleAct (2.29) $==20000$ Int. Scaling: $1=1 \quad$ Type: \quad SI Volatile: \mathbf{N}				ш
99.17	SqrWavePeriod (square wave period) The time period of the square wave generator. Int. Scaling: $100==1 \mathrm{~s} \quad$ Type: Volatile: N	$\stackrel{\square}{\circ}$	$\stackrel{0}{0}^{\circ}$ 아	O os	ш
99.18	SqrWaveIndex (square wave index) Index pointer to the source (signal/parameter) of the square wave signal [e.g. 2301 equals SpeedRef (23.01)]. Note1: After a power-up SqrWaveIndex (99.18) is set back to 0 and thus disables the square wave function. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: Y		\%		ш

DCS800 panel operation

Chapter overview

This chapter describes the handling of the DCS800 panel..

Start-up

The commissioning configures the drive and sets parameters that define how the drive operates and communicates. Depending on the control and communication requirements, the commissioning requires any or all of the following:

- The Start-up Assistant (via DCS800 panel or DriveWindow Light) steps you through the default configuration. The DCS800 panel Start-up Assistant runs automatically at the first power up, or can be accessed at any time using the main menu.
- Application macros can be selected to define common, alternate system configurations. See chapter Application Macros.
- Additional adjustments can be made using the DCS800 panel to manually select and set individual parameters. See chapter Signal and parameter list.

Control panel

Use the DCS800 panel to control the DCS800, to read status data, to adjust parameters and to use the pre-programmed assistants.

Features:

The DCS800 panel features:

- Alphanumeric LCD display
- Language selection for the display by means of Language (99.01)
- Drive connection can be made or detached at any time
- Start-up Assistant for ease drive commissioning
- Copy function, parameters can be copied into the DCS800 panel memory to be downloaded to other drives or as backup
- Context sensitive help

Fault- and alarm messages including fault history

Display overview

The following table summarizes the button functions and displays of the DCS800 panel.

DCS800 FW pan sum.dsf

General display features

Soft key functions:

The soft key functions are defined by the text displayed just above each key.

Display contrast:

To adjust display contrast, simultaneously press the MENU key and UP or DOWN, as appropriate.

Output mode

Use the output mode to read information on the drive's status and to operate the drive. To reach the output mode, press EXIT until the LCD display shows status information as described below.

Status information:

Top: The top line of the LCD display shows the basic status information of the drive:

- LOC indicates that the drive control is local from the DCS800 panel.
- REM indicates that the drive control is remote, via local I/O or overriding control.
- 2 indicates the drive and motor rotation status as follows:

DCS800 panel display	Significance
$\begin{array}{l}\text { Rotating arrow (clockwise or } \\ \text { counter clockwise) }\end{array}$	$-\quad$ Drive is running and at setpoint
$-\quad$ Shaft direction is forward 2 or reverse	

- Upper right position shows the active reference, when in local from panel.

Middle: Using parameter Group 34, the middle of the LCD display can be configured to display up to three parameter values:

- By default, the display shows three signals.
- Use DispParam1Set (34.01), DispParam2Set (34.08) and DispParam3Set (34.15) to select signals or parameters to display. Entering value 0 results in no value displayed. For example, if $34.01=0$ and $34.15=0$, then only the signal or parameter specified by 34.08 appears on the DCS800 panel display.

Bottom: The bottom of the LCD display shows:

- Lower corners show the functions currently assigned to the two soft keys.
- Lower middle displays the current time (if configured to do so).

Operating the Drive:

LOC/REM: Each time the drive is powered up, it is in remote control (REM) and is controlled as specified in CommandSel (10.01).
To switch to local control (LOC) and control the drive using the DCS800 panel, press the ($\stackrel{\text { IREM) }}{ }$ button.

- When switching from remote control (REM) to local control (LOC) the
drive's status (e.g. On, Run) and the remotely set speed reference are copied and used. Thus the drive e.g. keeps on running when switching from remote control (REM) to local control (LOC).
- When switching from local control (LOC) to remote control (REM) the drive's status (e.g. On, Run) and the speed reference of the remote control are taken.
To switch back to remote control (REM) press the RE button.
Start/Stop: To start and stop the drive press the START and STOP buttons.
Shaft direction: To change the shaft direction press DIR.
Speed reference: To modify the speed reference (only possible if the display in the upper right corner is highlighted) press the UP or DOWN button (the reference changes immediately).
The speed reference can be modified via the DCS800 panel when in local control (LOC).

Note:

The START / STOP buttons, shaft direction (DIR) and reference functions are only valid in local control (LOC).

Other modes

Below the output mode, the DCS800 panel has:

- Other operating modes are available through the MAIN MENU.
- A fault mode that is triggered by faults. The fault mode includes a diagnostic assistant mode.
- An alarm mode that is triggered by drive alarms.

Access to the MAIN MENU and other modes:

To reach the MAIN MENU:

1. Press EXIT, as necessary, to step back through the menus or lists associated with a particular mode. Continue until you are back to the output mode.
2. Press MENU from the output mode. At this point, the middle of the display is a listing of the other modes, and the top-right text says "MAIN MENU".
3. Press UP/DOWN to scroll to the desired mode.
4. Press ENTER to enter the mode that is highlighted.

Following modes are available in the MAIN MENU:

1. Parameters mode
2. Start-up assistants mode
3. Macros mode (currently not used)
4. Changed parameters mode
5. Fault logger mode
6. Clock set mode
7. Parameter backup mode
8. I/O settings mode (currently not used)

The following sections describe each of the other modes.

Parameters mode:

Use the parameters mode to view and edit parameter values:

1. Press UP/DOWN to highlight PARAMETERS in the MAIN MENU, then press ENTER.

LOC U MAIN MENU---------------1
PARAMETERS
ASSISTANTS
MACROS
EXIT ENTER
2. Press UP/DOWN to highlight the appropriate parameter group, then press SEL.

LOC U PAR GROUPS------------01	
99 Start-up data	
01 Phys Act Values	
02 SPC Signals	
03 Ref/Act Values	
04 Information	
EXIT	SEL

3. Press UP/DOWN to highlight the appropriate parameter in a group, then press EDIT to enter PAR EDIT mode.

LOC U PARAMETERS-------------- 9901 Language	
9902 M1NomVolt	
350 V	
9903 M1NomCur	
9904 M1BaseSpeed	
EXIT	EDIT

Note:

The current parameter value appears below the highlighted parameter.
4. Press UP/DOWN to step to the desired parameter value.

Note:

To get the parameter default value press UP/DOWN simultaneously.
5. Press SAVE to store the modified value and leave the PAR EDIT mode or press CANCEL to leave the PAR EDIT mode without modifications.

6. Press EXIT to return to the listing of parameter groups, and again to step back to the MAIN MENU.

Start-up assistants mode:

Use the start-up assistants mode for basic commissioning of the drive.
When the drive is powered up the first time, the start-up assistants guides you through the setup of the basic parameters.
There are seven start-up assistants available. They can be activated one after the other, as the ASSISTANTS menu suggests, or independently. The use of the assistants is not required. It is also possible to use the parameter mode instead. The assistant list in the following table is typical:

1. Name plate data	- Enter the motor data, the mains (supply) data, the most important protections and follow the instructions of the assistant. - After filling out the parameters of this assistant it is - in most cases possible to turn the motor for the first time.
2. Macro assistant	- Selects an application macro.
3. Autotuning field current controller	- Enter the field circuit data and follow the instructions of the assistant. - During the autotuning the main respectively field contactor will be closed, the field circuit is measured by means of nominal field current and the field current control parameters are set. The armature current is not released while the autotuning is active and thus the motor should not turn. - When the autotuning is finished successfully the parameters changed by the assistant are shown for confirmation. If the assistant fails it is possible to enter the fault mode for more help.
4. Autotuning armature current controller	- Enter the motor nominal current, the basic current limitations and follow the instructions of the assistant. - During the autotuning the main contactor will be closed, the armature circuit is measured by means of armature current bursts and the armature current control parameters are set. The field current is not released while the autotuning is active and thus the motor should not turn, but due to remanence in the field circuit about 40% of all motors will turn. These motors have to be locked. - When the autotuning is finished successfully the parameters changed by the assistant are shown for confirmation. If the assistant fails it is possible to enter the fault mode for more help.
5. Speed feedback assistant	- Enter the EMF speed feedback parameters, - if applicable - the parameters for the pulse encoder respectively the analog tacho and follow the instructions of the assistant. - The speed feedback assistant detects the kind of speed feedback the drive is using and provides help to set up pulse encoders respectively to fine tune analog tachometers. - During the autotuning the main contactor and the field contactor - if existing - will be closed and the motor will run up to base speed [M1BaseSpeed (99.04)]. During the whole procedure the drive will be in EMF speed control despite the setting of M1SpeedFbSel (50.03). - When the assistant is finished successfully the speed feedback is set. If the assistant fails it is possible to enter the fault mode for more help.
6. Autotuning speed controller	- Enter the motor base speed, the basic speed limitations, the speed filter time and follow the instructions of the assistant. - During the autotuning the main contactor and the field contactor - if existing - will be closed, the ramp is bypassed and torque respectively current limits are valid. The speed controller is tuned by means of speed bursts up to base speed [M1BaseSpeed (99.04)] and the speed controller parameters are set. - When the autotuning is finished successfully the parameters changed by the assistant are shown for confirmation. If the assistant fails it is possible to enter the fault mode for more help.

	Attention: This assistant is using the setting of M1SpeedFbSel (50.03). If using setting Encoder or Tacho make sure the speed feedback is working properly!
7. Field weakening assistant (only used when maximum speed is higher than base speed)	$-\quad$Enter the motor data, the field circuit data and follow the instructions of the assistant. During the autotuning the main contactor and the field contactor - if existing - will be closed and the motor will run up to base speed [M1BaseSpeed (99.04)]. The EMF controller data are calculated, the flux linearization is tuned by means of a constant speed while decreasing the field current and the EMF controller respectively flux linearization parameters are set.
When the autotuning is finished successfully the parameters changed by	
the assistant are shown for confirmation. If the assistant fails it is	
possible to enter the fault mode for more help.	

1. Press UP/DOWN to highlight ASSISTANTS in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the appropriate start-up assistant, then press SEL to enter PAR EDIT mode.
3. Make entries or selections as appropriate.
4. Press SAVE to save settings. Each individual parameter setting is valid immediately after pressing SAVE.
5. Press EXIT to step back to the MAIN MENU.

Macros mode:

Currently not used!

Changed parameters mode:

Use the changed parameters mode to view and edit a listing of all parameter that have been changed from their default values:

1. Press UP/DOWN to highlight CHANGED PAR in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight a changed parameter, then press EDIT to enter PAR EDIT mode.

Note:

The current parameter value appears below the highlighted parameter.
3. Press UP/DOWN to step to the desired parameter value.

Note:

To get the parameter default value press UP/DOWN simultaneously.
4. Press SAVE to store the modified value and leave the PAR EDIT mode or press CANCEL to leave the PAR EDIT mode without modifications.

Note:

If the new value is the default value, the parameter will no longer appear in the changed parameter list.
5. Press EXIT to step back to the MAIN MENU.

Fault logger mode:

Use the fault logger mode to see the drives fault, alarm and event history, the fault state details and help for the faults:

1. Press UP/DOWN to highlight FAULT LOGGER in the MAIN MENU, then press ENTER to see the latest faults (up to 20 faults, alarms and events are logged).
2. Press DETAIL to see details for the selected fault. Details are available for the three latest faults, independent of the location in the fault logger.
3. Press DIAG to get additional help (only for faults).
4. Press EXIT to step back to the MAIN MENU.

Clock set mode:

Use the Clock set mode to:

- Enable or disable the clock function.
- Select the display format.
- Set date and time.

1. Press UP/DOWN to highlight CLOCK SET in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the desired option, then press SEL.
3. Choose the desired setting, then press SEL or OK to store the setting or press CANCEL to leave without modifications.
4. Press EXIT to step back to the MAIN MENU.

Note:

To get the clock visible on the LCD display at least one change has to be done in the clock set mode and the DCS800 panel has to be de-energized and energized again.

Parameter backup mode:

The DCS800 panel can store a full set of drive parameters.

- AP programs will be uploaded and downloaded when they are not protected see EditCmd (83.02).
- The type code of the drive is write protected and has to be set manually by means of ServiceMode (99.06) = SetTypeCode and TypeCode (97.01).
The parameter backup mode has following functions:
UPLOAD TO PANEL: Copies all parameters from the drive into the DCS800 panel. This includes both user sets (User1 and User2) - if defined - and internal parameters such as those created by tacho fine tuning. The DCS800 panel memory is non-volatile and does not depend on its battery. Can only be done in drive state Off and local from panel.

DOWNLOAD FULL SET: Restores the full parameter set from the DCS800 panel into the drive. Use this option to restore a drive, or to configure identical drives. Can only be done in drive state Off and local from panel.

Note:

This download does not include the user sets.
DOWNLOAD APPLICATION: Currently not used!
The general procedure for parameter backup operations is:

1. Press UP/DOWN to highlight PAR BACKUP in the MAIN MENU, then press

ENTER.

2. Press UP/DOWN to highlight the desired option, then press SEL.
3. Wait until the service is finished, then press OK.
4. Press EXIT to step back to the MAIN MENU.

I/O settings mode:

Currently not used!

Fault tracing

Chapter overview

This chapter describes the protections and fault tracing of the drive.

General

Fault modes
Depending on the trip level of the fault the drive reacts differently. The drive's reaction to a fault with trip level 1 and 2 is fixed. See also paragraph Fault signals of this manual. The reaction to a fault of level 3 and 4 can be chosen by means of SpeedFbFItMode (30.36) respectively FaultStopMode (30.30).

Converter protection

Auxiliary undervoltage

If the auxiliary supply voltage fails while the drive is in RdyRun state (MSW bit 1), fault F501 AuxUnderVolt is generated.

Auxiliary supply voltage	Trip level
230 VAC	<185 VAC
115 VAC	<96 VAC

Armature overcurrent

The nominal value of the armature current is set with M1NomCur (99.02).
The overcurrent level is set by means of ArmOvrCurLev (30.09).
Additionally the actual current is monitored against the overcurrent level of the converter module. The converter's actual overcurrent level can be read from ConvOvrCur (4.16).

Exceeding one of the two levels causes F502 ArmOverCur.

Converter overtemperature / converter fan current
 Converter overtemperature:

The maximum temperature of the bridge can be read from MaxBridgeTemp (4.17) and is automatically set by TypeCode (97.01) or manually set by S MaxBrdgTemp (97.04).

Note:
When setting the air entry temperature for D6 and D7 modules manually use MaxBrdgTemp (97.04) $=50^{\circ} \mathrm{C}$ as absolute maximum.

Exceeding this level causes F504 ConvOverTemp. The threshold for A104 ConvOverTemp, is $5^{\circ} \mathrm{C}$ below the tripping level. The measured temperature can be read from BridgeTemp (1.24).

If the measured temperature drops below minus $10^{\circ} \mathrm{C}$, $\mathrm{F}_{5} 04$ ConvOverTemp is generated in order to monitor the temperature sensor against short circuit.

Auto-reclosing (mains undervoltage)

Auto-reclosing allows to continue drive operation immediately after a short mains undervoltage without any additional functions of the overriding control system.

In order to keep the overriding control system and the drive control electronics running through short mains undervoltage, an UPS is needed for the 115/230 VAC auxiliary voltages. Without the UPS all DI like e.g. E-stop, start inhibition, acknowledge signals etc. would have false states and trip the drive although the system itself could stay alive. Also the control circuits of the main contactor must be supplied during the mains undervoltage.

Auto-reclosing defines whether the drive trips immediately with F512 MainsLowVolt or if the drive will continue running after the mains voltage returns.

Short mains undervoltage

The supervision of mains undervoltage has two levels:

1. UNetMin1 (30.22) alarm, protection and trip level
2. UNetMin2 (30.23) trip level

If the mains voltage falls below UNetMin1 (30.22) but stays above UNetMin2 (30.23), the following actions take place:

1. the firing angle is set to ArmAlphaMax (20.14),
2. single firing pulses are applied in order to extinguish the current as fast as possible,
3. the controllers are frozen,
4. the speed ramp output is updated from the measured speed and
5. A111 MainsLowVolt is set as long as the mains voltage recovers before PowrDownTime (30.25) is elapsed, otherwise F512 MainsLowVolt is generated.
If the mains voltage returns before PowrDownTime (30.25) is elapsed and the overriding control keeps the commands On (MCW bit 0) and Run (MCW bit 3) = 1, the drive will start again after 2 seconds. Otherwise the drive trips with F512

MainsLowVolt.

When the mains voltage drops below UNetMin2 (30.23), the action is selected by means of PwrLossTrip (30.21):

1. the drive is immediately tripped with F512 MainsLowVolt or
2. the drive starts up automatically, see description for UNetMin1 (30.22). Below UNetMin2 (30.23) the field acknowledge signals are ignored and blocked

Note1:

UNetMin2 (30.23) isn't monitored, unless the mains voltage drops below UNetMin1 (30.22). Thus, for proper operation, UNetMin1 (30.22) must be larger than UNetMin2 (30.23).

Note2:

If no UPS is available, set PwrLossTrip (30.21) to Immediately. Thus the drive will
trip with F512 MainsLowVolt avoiding secondary phenomena due to missing power for Al's and Dl's.

Drive behavior during auto-reclosing

Auto-reclosing

Mains synchronism

As soon as the main contactor is closed and the firing unit is synchronized with the incoming voltage, supervising of the synchronization is activated. If the synchronization fails, F514 MainsNotSync will be generated.

The permitted deviation of the cycle time between 2 measurements is set by means of DevLimPLL (97.13).
The synchronization of the firing unit takes typically 300 ms before the current controller is ready.

Synchronization measurement

If $\Delta \mathrm{T}$ is longer than DevLimPLL (97.13) fault F514 MainsNotSync will be generated. The actual value of the PLL can bee seen in PLLOut (3.20).

Note:

at 50 Hz one period $==360^{\circ}==20 \mathrm{~ms}=20000 \mu \mathrm{~s}$
at 60 Hz one period $==360^{\circ}==16.7 \mathrm{~ms}=16667 \mu \mathrm{~s}$

Mains overvoltage

The overvoltage level is fixed to 1.3 * NomMainsVolt (99.10). Exceeding this level causes F513 MainsOvrVolt.

Communication loss

The communication to several devices is supervised. The reaction to a communication loss can be chosen by means of LocalLossCtrl (30.27) respectively ComLossCtrl (30.28).
The time out is set by the parameters listed in the table as well as all dependent fault- and alarm messages.

Overview local and communication loss:				
Device	Loss control	Time out	Related fault	Related alarm
Control panel	LocalLossCtrl (30.27)	fixed to 5s	F546 LocalCmdLoss	A130 LocalCmdLoss
DW				
DWL				
Rxxx (Fieldbus)	ComLossCtrl (30.28)	FB TimeOut (30.35)	F528 FieldBusCom	A128 FieldBusCom
DCSLink		MailBoxCycle1 (94.13), MailBoxCycle2 (94.19), MailBoxCycle3 (94.25), MailBoxCycle4 (94.31)	F544 P2PandMFCom	A112 P2PandMFCom
		12P TimeOut (94.03)	F535 12PulseCom	-
		FexTimeOut (94.07)	F516 M1FexCom F519 M2FexCom	
$\begin{aligned} & \text { SDCS- } \\ & \text { COM-8 } \end{aligned}$	Ch0ComLossCtrl (70.05)	Ch0TimeOut (70.04)	F543 COM8Com	A113 COM8Com

Overview local and communication loss

Fan, field and mains contactor acknowledge

When the drive is switched On (MCW bit 0), the program closes the fan contactor and waits for acknowledge. After it is received, the field contactor is closed respectively the field converter is started and the program waits for the field acknowledge. Finally the main contactor is closed and its acknowledge is waited for.

If the acknowledges are not received during 10 seconds after the On command (MCW bit 0) is given, the corresponding fault is generated. These are:

1. F521 FieldAck, see Mot1FexStatus (6.12)
2. F523 ExtFanAck, see MotFanAck (10.06)
3. F524 MainContAck, see MainContAck (10.21)
4. F523 ConvFanAck, see ConvFanAck (10.20)

Note:

F521 FieldAck is the sum fault for all field related faults like:

1. F515 M1FexOverCur, see M1FldOvrCurLev (30.13)
2. F516 M1FexCom, see FexTimeOut (94.07)
3. F529 M1FexNotOK, fault during self-diagnosis
4. F537 M1FexRdyLost, AC missing or not in synchronism
5. F541 M1FexLowCur, see M1FldMinTrip (30.12)

External fault

The user has the possibility to connect external faults to the drive. The source can be connected to Dl's, MainCtrIWord (7.01) or AuxCtrIWord (7.02) and is selectable by ExtFaultSel (30.31). External faults generate F526 ExternaIDI.

ExtFaultOnSel (30.33) selects the reaction:

1. external fault is always valid independent from drive state
2. external fault is only valid when drive state is RdyRun (MSW bit 1) for at least 6 s

Note:

In case inverted fault inputs are needed, it is possible to invert the DI's.

Bridge reversal

With a 6-pulse converter, the bridge reversal is initiated by changing the polarity of the current reference (command to change direction). Upon zero current detection, the bridge reversal is started. Depending on the moment involved, the new bridge may be "fired" either in the same or in the next current cycle.

The switchover can be delayed by RevDly (43.14). The delay starts after zero current has been detected. Thus RevDly (43.14) is the length of the forced current gap during a bridge changeover. This feature may prove useful when operating with large inductances. After the reversal delay is elapsed the system changes to the selected bridge without any further consideration.

After a command to change current direction the opposite current direction has to be reached before ZeroCurTimeOut (97.19) plus RevDly (43.14) has been elapsed otherwise the drive trips with F533 ReversalTime [FaultWord3 (9.03) bit 0].
$I_{\text {act }}$

Bridge reversal

Analog input monitor

In case the analog input is set to 2 V to 10 V respectively 4 mA to 20 mA it is possible to check for wire breakage by means of AI Mon4mA (30.29).

In case the threshold is undershoot one of the following actions will take place:

1. the drive stops according to FaultStopMode (30.30) and trips with F551 AlRange
2. the drive continues to run at the last speed and sets A127 AlRange
3. the drive continues to run with FixedSpeed1 (23.02) and sets A127 AlRange

Motor protection

Armature overvoltage

The nominal value of the armature voltage is set with M1NomVolt (99.02).
The overvoltage level is set by means of ArmOvrVoltLev (30.08). Exceeding this level causes F503 ArmOverVolt.

Residual current

The residual current detection (earth fault) is based on:

- a sum current transformer at the AC-side of the converter or
- an external device (e.g. Bender relays).

If a current transformer is used its secondary winding is connected to AI4 (X3:11 and X3:12) on the SDCS-IOB-3 board. The sum current of all three phases has to be zero, otherwise a residual current is detected and F505 ResCurDetect is set.

ResCurDetectSel (30.05) activates the residual current detection and selects the choice of connected hardware (transformer or external device).

The residual current detection tripping level is set with ResCurDetectLim (30.06), if a sum current transformer is used. In case an external device is used ResCurDetectLim (30.06) is deactivated.

ResCurDetectDel (30.07) delays F505 ResCurDetect.

Measured motor temperature

General
The temperatures of motor 1 and motor 2 (parameter for motor 2 see group 49) can be measured at the same time. Alarm and tripping levels are selected by means of M1AlarmLimTemp (31.06) and M1FaultLimTemp (31.07). If the levels are exceeded A106 M1OverTemp respectively F506 M1OverTemp is set. The motor fan will continue to work until the motor is cooled down to alarm limit.

The measurement is configured by means of M1TempSel (31.05) and the measured temperature is shown in Mot1TempMeas (1.22). The unit of the measurement depends on the selected measurement mode. For PT100 the unit is degree Celsius and for PTC the unit is Ω.

The temperature measurements uses either AI2 and AI3 of the SDCS-IOB-3 or AI7 and AI8 of the RAIO for motor temperature measurement. Additionally the SDCS-IOB-3 features a selectable constant current source for PT100 (5 mA) or PTC (1.5 mA).

Measurement selection
Connection possibilities for PT100:
_ max. 3 PT100 for motor 1 and max. 3 PT100 for motor 2 or

- up to 6 PT100 for a single motor.

SDCS-IOB-3:

Al 2 (motor 1) and AI3 (motor 2) are used for the temperature measurement with PT100. In case only one PT100 is connected to an Al the input range must be configured by jumpers to a gain of 10. Jumper settings for input range and constant current source see Hardware Manual.

PT100 and SDCS-IOB-3
For more information see section Analog Inputs.

RAIO for motor temperature measurement:

Al7 (motor 1) and AI8 (motor 2) are used for the temperature measurement with PT100. AI7 and AI8 have to be activated by means of AIO MotTempMeas (98.12).

single motor

PT100 and second RAIO

SDCS-IOB-3:

Connection possibilities for PTC:

- max. 1 PTC for motor 1 and max. 1 PTC for motor 2 or
- up to 2 PTC for a single motor.

Al2 (motor 1) and Al3 (motor 2) are used for the temperature measurement with PTC. Jumper settings see Hardware Manual.

PTC and SDCS-IOB-3

SDCS-CON-4:

Connection possibilities for PTC:

- max. 1 PTC for motor 1 or max. 1 PTC for motor 2.

Only AI2 can be used for the temperature measurement with PTC. Jumper settings see Hardware Manual.

PTC and SDCS-CON-4

Klixon

The temperature of motor 1 and motor 2 can be supervised by means of klixons. The klixon is a thermal switch, opening its contact at a defined temperature. This can be used for supervision of the temperature by means of connecting the switch to a digital input of the drive. The digital input for the klixon(s) is selected with M1KlixonSel (31.08). The drive trips with F506 M1OverTemp when the klixon opens. The motor fan will continue to work until the klixon is closed again.

Note:

It is possible to connect several klixons in series.

Motor thermal model

General
The drive includes two thermal models one for motor 1 and one for motor 2. The models can be used at the same time. Two models are needed in case one converter is shared by two motors (e.g. shared motion). During normal operation only one thermal model is needed.

It is recommended to use the thermal model of the motor if a direct motor temperature measurement isn't available and the current limits of the drive are set higher than the motor nominal current.

The thermal model is based on the actual motor current related to motor nominal current and rated ambient temperature. Thus the thermal model does not directly calculate the temperature of the motor, but it calculates the temperature rise of the motor. This is based on the fact that the motor will reach its end temperature after the specified time when starting to run the cold motor $\left(40^{\circ} \mathrm{C}\right)$ with nominal
current. This time is about four times the motor thermal time constant.
The temperature rise of the motor behaves like the time constant which is proportional with the motor current to the power of two:

$$
\begin{equation*}
\Phi=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} *\left(1-e^{-\frac{t}{\tau}}\right) \tag{1}
\end{equation*}
$$

When the motor is cooling down, the temperature model follows:

$$
\begin{equation*}
\Phi=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} * e^{-\frac{t}{\tau}} \tag{2}
\end{equation*}
$$

with: $\quad \Phi_{\text {alamm }}=$ temperature rise $==[\text { M1AlarmLimLoad }(31.03)]^{2}$
$\Phi_{\text {tip }}=$ temperature rise $==[\text { M1FaultLimLoad (31.04) }]^{2}$
$\Phi=$ temperature rise $==$ Mot1TempCalc (1.20)
$\mathrm{l}_{\text {act }}=$ actual motor current (overload e.g. 170\%)
$I_{\text {Motr }}^{\text {act }}=$ nominal motor current (100%)
$\mathrm{t}=$ length of overload (e.g. 60 s)
$\tau=$ temperature time constant (in seconds) $==$ M1ModelTime (31.01)
As from the formulas (1) and (2) can be seen, the temperature model uses the same time constant when the motor is heating or cooling down.

Alarm and tripping levels
Alarm and tripping levels are selected by means of M1AlarmLimLoad (31.03) and M1FaultLimLoad (31.04). If the levels are exceeded A107 M1OverLoad respectively F507 M1OverLoad is set. The motor fan will continue to work until the motor is cooled down to alarm limit.

The default values are selected in order to achieve quite high overload ability. Recommended value for alarming is 102% and for tripping 106% of nominal motor current. Thus the temperature rise is:

$$
\begin{aligned}
& -\Phi_{\text {alarm }}==[\text { M1AlarmLimLoad }(31.03)]^{2}=(102 \%)^{2}=1.02^{2}=1.04 \text { and } \\
& -\Phi_{\text {titi }}==[\text { M1FaultLimLoad }(31.04)]^{2}=(106 \%)^{2}=1.06^{2}=1.12 .
\end{aligned}
$$

The temperature rise output of the model is shown in Mot1TempCalc (1.20).
Thermal model selection
The activation of the thermal models is made by setting M1ModelTime (31.01) greater than zero.

Thermal time constant
The time constant for the thermal model is set by means of M1ModelTime (31.01). If the thermal time constant of a motor is given by the manufacturer just write it into M1ModelTime (31.01).
In many cases the motor manufacturer provides a curve that defines how long the motor can be overloaded by a certain overload factor. In this case the proper thermal time constant must be calculated.

Example:

The drive is desired to trip if the motor current exceeds 170 \% of motor nominal current for more than 60 seconds.
Selected tripping base level is 106% of nominal motor current, thus M1FaultLimLoad (31.04) = 106%.

Motor load curve

Note:

This is an example and does not necessarily correspond to any motor!
Using formula (1) we can calculate the correct value for τ, when starting with a cold motor.
With:
$(31.04)^{2}=\Phi_{\text {trip }}=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} *\left(1-e^{-\frac{t}{\tau}}\right)$
Follows:

$$
\tau=-\frac{t}{\ln \left(1-(31.04)^{2} * \frac{I_{\text {Motn }}{ }^{2}}{I_{\text {act }}{ }^{2}}\right)}=-\frac{60 \mathrm{~s}}{\ln \left(1-1.06^{2} * \frac{1.0^{2}}{1.7^{2}}\right)}=122 \mathrm{~s}
$$

Set M1ModelTime (31.01) = 122 s .

Field overcurrent

The nominal value of the field current is set with M1NomFldCur (99.11).
The overcurrent level is set by means of M1FldOvrCurLev (30.13). Exceeding this level causes F515 M1FexOverCur.

Armature current ripple

The current control is equipped with a current ripple monitor.
This function detects:

1. a broken fuse or thyristor
2. too high gain of the current controller
3. a broken current transformer (T51, T52)

The current ripple monitor level is set by means of CurRippleLim (30.19). Exceeding this level causes either F517 ArmCurRipple or A117 ArmCurRipple depending on CurRippleSel (30.18).

Current ripple monitor method is based on comparing positive and negative currents of each phase. The calculation is done per thyristor pair:

Current ripple monitor method
CurRipple (1.09) is calculated as abs $\left(\mathrm{I}_{1.6}-\mathrm{I}_{3.4}\right)+\mathrm{abs}\left(\mathrm{I}_{1.2}-\mathrm{I}_{5-4}\right)+\mathrm{abs}\left(\mathrm{I}_{3.2}-\mathrm{I}_{5-6}\right)$. By lowpass filtering with 200 ms CurRippleFilt (1.10) is generated and compared against CurRippleLim (30.19).

Note:

The load influences the error signal CurRippleFilt (1.10).
Current near discontinuous level will create values of about 300% *
ConvCurActRel (1.15) if a thyristor is not fired.
High inductive loads will create values of about 90% * ConvCurActRel (1.15) if a thyristor is not fired.

Commissioning hint:

It is not possible to pre-calculate clear levels.
The current control reacts to unstable current feedback.
The load is continuously driving the current if a thyristor is not fired.

Speed feedback monitor

The speed feedback monitor supervises an attached analog tacho or encoder for proper function by means of measured speed and measured EMF. Above a certain EMF the measured speed feedback must be above a certain threshold. The sign of the speed measurement must be correct as well:

Speed measurement supervision

The drive reacts according to SpeedFbFItSel (30.17) when:

1. the measured EMF is greater than EMF FbMonLev (30.15) and
2. the measured speed feedback SpeedActEnc (1.03) respectively SpeedActTach (1.05) is lower than SpeedFbMonLev (30.14).

Example:

- SpeedFbMonLev (30.14) = 15 rpm
- EMF FbMonLev (30.15) = 50 V

The drive trips when the EMF is greater than 50 V while the speed feedback is \leq 15 rpm .

Speed feedback monitor

SpeedFbFItSel (30.17) selects the reaction to a speed feedback problem:

1. the drive is immediately tripped with F522 SpeedFb
2. the speed feedback is switched to EMF and the drive is stopped according to E StopRamp (22.11), then F522 SpeedFb is set
3. the speed feedback is switched to EMF and A125 SpeedFb is set

In case the field is weakened the drive is immediately tripped with F522 SpeedFb.

Stall protection

The stall protection trips the converter with F531 MotorStalled when the motor is in apparent danger of overheating. The rotor is either mechanically stalled or the load is otherwise continuously too high. It is possible to adjust the supervision (time, speed and torque).

The stall protection trips the drive if:

1. the actual speed is below StallSpeed (30.02) and
2. the actual torque exceeds StallTorq (30.03)
3. for a time longer than programmed in StallTime (30.01).

Overspeed protection

The motor is protected against overspeed e.g. in a case when the drive is in torque control mode and the load drops unexpected.

The overspeed level is set by means of M1OvrSpeed (30.16). Exceeding this level causes F532 MotOverSpeed.

Current rise

The protection against fast current rise during generating is configured by means of ArmCurRiseMax (30.10).

Exceeding this level causes F539 FastCurRise. If present the DC-breaker is tripped and the main contactor is opened.

Field undercurrent

The nominal value of the field current is set with M1NomFldCur (99.11).
The minimum field current level is set by means of M1FldMinTrip (30.12). Undershooting this level causes F541 M1FexLowCur.

FldMinTripDly (45.18) delays F541 M1FexLowCur.

Tacho polarity

The polarity of the analog tacho is checked against the EMF. If the polarity is wrong F553 TachPolarity is generated.

Tacho range

If an overflow of the AITacho input is imminent F554 TachoRange is generated. Check for the right connections (X3:1 to X3:4) on the SDCS-CON-4.

Status messages

Display of status, fault and alarm signals

Categories of signals and display options
The thyristor power converters series DCS800 generate general messages, power-up errors, fault and alarm signals:

general messages

power-up errors
F fault signals
A alarm signals
The messages are indicated on the seven-segment display (H2500) of the SDCS-CON-4 control board. On the seven-segment display the messages appear in code. The letters and numbers of multi-character codes are displayed one after the other for 0.7 seconds at a time. Plain text messages are available on the control panels and in the fault logger of DriveWindow and DriveWindow Light.

F514 = mains not in synchronism
For evaluation via digital outputs or communication to the overriding control 16 bit words are available, containing all fault and alarm signals as binary code:

- FaultWord1 (9.01),
- FaultWord2 (9.02),
- FaultWord3 (9.03),
- FaultWord4 (9.04),
- UserFaultWord (9.05),
- AlarmWord1 (9.06),
- AlarmWord2 (9.07),
- AlarmWord3 (9.08) and
- UserAlarmWord (9.09)

General messages

SDCS-CON-4

General messages will only be indicated on the seven-segment display of the SDCS-CON-4.

s-gment display	Text on control panel, DriveWindow and DriveWindow Light	Definition	Remark
8	not available	firmware is not running	-
.	not available	firmware is running, no faults, no alarms	-
-	not available	indication while loading firmware into SDCS-CON-4	-
d	not available	indication while loading panel texts into SDCS-CON-4	-
u	not available	panel text loading completed, disconnect download tool	-

Power-up errors (E)

SDCS-CON-4
Power-up errors will only be indicated on the seven segment display of the SDCS-CON-4. With a power-up error active it is not possible to start the drive.

segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition	Remark
E01	not available	Checksum fault firmware flash	1,2
E02	not available	SDCS-CON-4 ROM memory test error	1,2
E03	not available	SDCS-CON-4 RAM memory test error (even addresses)	1,2
E04	not available	SDCS-CON-4 RAM memory test error (odd addresses)	1,2
E05	not available	SDCS-CON-4 hardware is not compatible, unknown board	1,2
E06	not available	SDCS-CON-4 watchdog timeout occurred	1,2

1. Units should be de-energized and energized. If the fault occurs again check the SDCS-CON-4, SDCS-PIN-4 respectively SDCS-POW-4 boards and change them if necessary.
2. Power-up errors are only enabled immediately after power on. If a power-up error is indicated during normal operation the reason is usually caused by EMC. In this case please check for proper grounding of cables, converter and cabinet.

Fault signals (F)

To avoid dangerous situations, damage of the motor, the drive or any other material some physical values must not exceed certain limits. Therefore limit values can be specified for these values by parameter setting which cause an alarm or a fault when the value exceeds the limits (e.g. max. armature voltage, max. converter temperature). Faults can also be caused by situations which inhibit the drive from normal operation (e.g. blown fuse).

A fault is a condition which requires an immediate stop of the drive in order to avoid danger or damage. The drive is stopped automatically and cannot be restarted before removing its cause.

All fault signals, with the exception of:

- F501 AuxUnderVolt,
- F525 TypeCode,
- F547 HwFailure and
- F548 FwFailure
are resetable in case the fault is eliminated.
To reset a fault following steps are required:
- remove the Run and On commands [UsedMCW (7.04) bit 3 and 0]
- eliminate the faults
- acknowledge the fault with Reset [UsedMCW (7.04) bit 7] via digital input, overriding control system or in Local mode with control panel, DriveWindow or DriveWindow Light
- depending on the systems condition, generate Run and On commands [UsedMCW (7.04) bit 3 and 0] again

The fault signals will switch the drive off completely or partly depending on its trip level.

Trip level 1:

- main contactor is switched off immediately
- field contactor is switched off immediately
- fan contactor is switched off immediately

Trip level 2:

- main contactor is switched off immediately
- field contactor is switched off immediately
- fan contactor stays on as long as the fault is pending or as long as FanDly (21.14) is running

Trip level 3:

The drive is stopping via SpeedFbFItMode (30.36), thus the

- main contactor is switched off immediately
- field contactor is switched off immediately in case of SpeedFbFltMode (30.36) $=$ CoastStop, but it stays on in case of field heating or SpeedFbFltMode (30.36) = DynBraking
- fan contactor stays on

At standstill the

- main contactor cannot be switched on again
- field contactor stays on in case of field heating
- fan contactor stays on as long as FanDly (21.14) is running

Trip level 4:

As long as the drive is stopping via FaultStopMode (30.30) , the

- main contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop or DynBraking, but it stays on in case of FaultStopMode (30.30) = RampStop or TorqueLimit
- field contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop, but it stays on in case of field heating or FaultStopMode (30.30) = RampStop, TorqueLimit or DynBraking
- fan contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop, but stays on in case of FaultStopMode (30.30) = RampStop, TorqueLimit or DynBraking
At standstill the
- main contactor is switched off immediately
- field contactor stays on in case of field heating
- fan contactor stays on as long as FanDly (21.14) is running

Trip level 5

As long as the drive is stopping via any communication loss control [LocalLossCtrl
(30.27), ComLossCtrl (30.28), Ch0ComLossCtrl (70.05) or Ch2ComLossCtrl
(70.15)], the

- main contactor is switched off immediately or stays on depending on the selected communication loss control
- field contactor is switched off immediately or stays on depending on the selected communication loss control, but it stays on in case of field heating
- fan contactor is switched off immediately or stays on depending on the selected communication loss control
At standstill
- main contactor is switched off immediately
- field contactor stays on in case of field heating
- fan contactor stays on as long as FanDly (21.14) is running

In case a fault occurs, it stays active until the cause is eliminated an a Reset [UsedMCW (7.04) bit 7] is given

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F501	501 AuxUnderVolt	Auxiliary undervoltage: The auxiliary voltage is too low while the drive is in operation. If resetting fails, check: - internal auxiliary voltages (SDCS-CON-4) - and change SDCS-CON-4 and / or SDCS-PIN-4 respectively SDCS-POW-4 board	$\begin{aligned} & \hline 9.01, \\ & \text { bit } 0 \end{aligned}$	RdyRun = 1	1
F502	502 ArmOverCur	Armature overcurrent: Check: - ArmOvrCurLev (30.09) - parameter settings of group 43 (current control: armature current controller tuning) - current and torque limitation in group 20 - all connections in the armature circuit - for faulty thyristors - armature cabling - in case of a rebuild kit proper connection of firing pulses and CT's	$\begin{aligned} & \text { 9.01, } \\ & \text { bit } 1 \end{aligned}$	always	3
F503	503 ArmOverVolt	Armature overvoltage (DC): Check: - if setting of ArmOvrVoltLev (30.08) is suitable for the system - parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization) - too high field current (e.g. problems with field weakening) - if the motor was accelerated by the load, - overspeed - does the speed scaling fit, see SpeedScaleAct (2.29) - proper armature voltage feedback - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51	$\begin{aligned} & 9.01, \\ & \text { bit } 2 \end{aligned}$	always	1
F504	504 ConvOverTemp	Converter overtemperature: Wait until the converter is cooled down. Shutdown temperature see MaxBridgeTemp (4.17) . Check: - converter door open - converter fan supply voltage - converter fan direction of rotation - converter fan components - converter cooling air inlet (filter) - ambient temperature - inadmissible load cycle - connector X12 on SDCS-CON-4 - connector X12 and X22 on SDCS-PIN-4/51	$\begin{aligned} & 9.01, \\ & \text { bit } 3 \end{aligned}$	always	2

| $7-$ segment display | Text on control panel, DriveWindow and DriveWindow Light | Definition / Action | Faultword | Fault is active when | \|l|l| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F505 | 505 ResCurDetect | Residual current detection (sum of $\mathrm{I}_{\mathrm{L} 1}, \mathrm{I}_{\mathrm{L} 2}, \mathrm{I}_{\mathrm{L} 3} \neq$ zero):
 Check:
 - ResCurDetectSel (30.05) , ResCurDetectLim (30.06) , ResCurDetectDel (30.07)
 - sum current transformer, if necessary change transformer or SDCS-IOB-3
 - disconnect the mains, verify zero voltage in armature and field circuits and make insulation tests for the complete installation | $\begin{array}{\|l\|} \hline 9.01, \\ \text { bit } 4 \end{array}$ | always | 1 |
| F506 | 506 M1OverTemp | Motor 1 measured overtemperature:
 Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down to alarm limit.
 Check:
 - M1FaultLimTemp (31.07) , M1KlixonSel (31.08)
 - motor temperature
 - motor fan supply voltage
 - motor fan direction of rotation
 - motor fan components
 - motor cooling air inlet (filter)
 - motor temperature sensors and cabling
 - ambient temperature
 - inadmissible load cycle
 - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3 | $\begin{aligned} & \text { 9.01, } \\ & \text { bit } 5 \end{aligned}$ | always | 2 |
| F507 | 507 M1OverLoad | Motor 1 calculated overload:
 Wait until the motor is cooled down. The motor fan will continue to work until the motor is calculated down to alarm limit.
 Check:
 - M1FaultLimLoad (31.04) | $\begin{aligned} & 9.01, \\ & \text { bit } 6 \end{aligned}$ | always | 2 |
| F508 | 508 I/OBoardLoss | I/O board not found or faulty:
 Check:
 - DCSLinkNodeID (94.01), CommModule (98.02), DIO ExtModule1 (98.03) , DIO ExtModule2 (98.04), AIO ExtModule (98.06) , AIO MotTempMeas (98.12) , IO BoardConfig (98.15)
 - flat cable connections between SDCS-CON-4 and SDCS-IOB-2/3 | $\begin{aligned} & \text { 9.01, } \\ & \text { bit } 7 \end{aligned}$ | always | 1 |

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F509	509 M2OverTemp	Motor 2 measured overtemperature: Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down to alarm limit. Check: - M2FaultLimTemp (49.37) , M2KlixonSel (49.38) - motor temperature (let motor cool down and restart) - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (filter) - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.01, \\ & \text { bit } 8 \end{aligned}$	always	2
F510	510 M2OverLoad	Motor 2 calculated overload: Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down to alarm limit. Check: - M2FaultLimLoad (49.34)	$\begin{aligned} & \text { 9.01, } \\ & \text { bit } 9 \end{aligned}$	always	2
F511	511 ConvFanCur	Converter fan current: only with ConvTempDly (97.05) $\neq 0$ and a PW10002/3 board connected to SDCS-PIN-4/51. Check: - converter fan supply voltage - converter fan direction of rotation - converter fan components - converter cooling air inlet - connector X12 on SDCS-CON-4 - connector X12 and X22 on SDCS-PIN-4/51	$\begin{aligned} & 9.01, \\ & \text { bit } 10 \end{aligned}$	RdyRun = 1	4
F512	512 MainsLowVolt	Mains low (under-) voltage (AC): Check: - PwrLossTrip (30.21) , UNetMin1 (30.22) , UNetMin2 (30.23) - If all 3 phases are present - if the mains voltage is within the set tolerance - if the main contactor closes and opens - if the mains voltage scaling is correct [NomMainsVolt (99.10)] - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51	$\begin{aligned} & 9.01, \\ & \text { bit } 11 \end{aligned}$	RdyRun = 1	3

| 7segment display | Text on control panel, DriveWindow and DriveWindow Light | Definition / Action | Faultword | Fault is active when | \|l|l| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F513 | 513 MainsOvrVolt | Mains overvoltage (AC):
 Actual mains voltage is > 1.3 * NomMainsVolt (99.10) for more than 10 s and RdyRun $=1$.
 Check:
 - if the mains voltage is within the set tolerance
 - if the mains voltage scaling is correct [NomMainsVolt (99.10)]
 - connector X12 and X13 on SDCS-CON-4
 - connector X12 and X13 on SDCS-PIN-4/51
 - cutting of resistors for voltage coding on SDCS-PIN-51 | $\begin{aligned} & 9.01, \\ & \text { bit } 12 \end{aligned}$ | RdyRun = 1 | 1 |
| F514 | 514 MainsNotSync | Mains not in synchronism (AC):
 The synchronization with the mains frequency has been lost.
 Check:
 - DevLimPLL (97.13)
 - mains supply
 - fuses etc
 - mains frequency ($50 \mathrm{~Hz} \pm 5 \mathrm{~Hz} ; 60 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$) and stability (df/dt = 17\%/s) [PLLOut (3.20)] | $\begin{aligned} & 9.01, \\ & \text { bit } 13 \end{aligned}$ | RdyRun = 1 | 3 |
| F515 | $\begin{array}{\|l\|} \hline 515 \\ \text { M1FexOverCur } \end{array}$ | Motor 1 field exciter overcurrent:
 Check:
 - M1FldOvrCurLev (30.13),
 - parameter settings of group 44 (field excitation: field current controller tuning)
 - connections of field exciter
 - insulation of cables and field winding
 - resistance of field winding
 - fault message of or at field exciter (7-segment display or flashing LED's) | $\begin{aligned} & 9.01, \\ & \text { bit } 14 \end{aligned}$ | RdyRun = 1 | 1 |
| F516 | 516 M1FexCom | Motor 1 field exciter communication loss:
 Check:
 - FexTimeOut (94.07)
 - flat cable connections between SDCS-CON-4 and SDCS-PIN-4
 - auxiliary voltage for integrated and external field exciter
 - DCSLink cable connections
 - DCSLink termination set dip switch S1100:1 = ON (DCF803-0035 and FEX-425-Int)
 - DCSLink node ID settings [DCSLinkNodeID (94.01) , M1FexNode (94.08) respectively switches S800 and S801 on DCF803-0035 and FEX-425-Int]
 - fault message of or at field exciter (7-segment display or flashing LED's) | $\begin{aligned} & 9.01, \\ & \text { bit } 15 \end{aligned}$ | RdyRun = 1 | 1 |

	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F517	517 ArmCurRipple	Armature current ripple: One or several thyristors may carry no current. Check: - CurRippleSel (30.18) ,CurRippleLim (30.19) - for too high gain of current controller [M1KpArmCur (43.06)] - current feedback with oscilloscope (6 pulses within one cycle visible?) - branch fuses - thyristor gate-cathode resistance - thyristor gate connection - current transformers (T51, T52)	$\begin{aligned} & 9.02, \\ & \text { bit } 0 \end{aligned}$	RdyRef = 1	3
F518	$\begin{array}{\|l\|} \hline 518 \\ \text { M2FexOverCur } \end{array}$	Motor 2 field exciter overcurrent: Check: - M2FldOvrCurLev (49.09) - parameter settings of group 49 (field excitation: field current controller tuning) - connections of field exciter - insulation of cables and field winding - resistance of field winding - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 1 \end{aligned}$	RdyRun = 1	1
F519	519 M2FexCom	Motor 2 field exciter communication loss: Check: - FexTimeOut (94.07) - flat cable connections between SDCS-CON-4 and SDCS-PIN-4 - auxiliary voltage for integrated and external field exciter - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01) , M2FexNode (94.09)] - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 2 \end{aligned}$	RdyRun = 1	1
F521	521 FieldAck	Selected motor, field acknowledge missing: Check: - M1UsedFexType (99.12) , if selection matches the field exciter type, Mot1FexStatus (6.12), Mot2FexStatus (6.13) - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 4 \end{aligned}$	RdyRun = 1	1

$\begin{gathered} 7- \\ \text { segment } \\ \text { display } \end{gathered}$	Text on control panel, DriveWindow and DriveWindow Ligh	Definition / Action	Faultword	Fault is active when	[100
F522	522 SpeedFb	Selected motor, speed feedback: The comparison of the speed feedback from pulse encoder or analog tacho has failed. Check: M1SpeedFbSel (50.03) , SpeedFbFItMode (30.36) , SpeedFbFItSel (30.17) pulse encoder: encoder itself, alignment, cabling, coupling, power supply (feedback might be too low), mechanical disturbances - analog tacho: tacho itself, tacho polarity and voltage, alignment, cabling, coupling, mechanical disturbances, jumper S1 on SDCS-CON-4 EMF: connection converter - armature circuit closed - SDCS-CON-4, SDCS-IOB-3, SDCS-POW-4	$\begin{aligned} & 9.02, \\ & \text { bit } 5 \end{aligned}$	always	
F523	523 ExtFanAck	External fan acknowledge missing: Check: - MotFanAck (10.06) - external fan contactor - external fan circuit - external fan supply voltage - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 6 \end{aligned}$	RdyRun = 1	4
F524	524 MainContAck	Main contactor acknowledge missing: Check: - MainContAck (10.21) - switch on - off sequence - auxiliary contactor (relay) switching the main contactor after On/Off command - safety relays - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 7 \end{aligned}$	RdyRun = 1	3
F525	525 TypeCode	Type code mismatch: Check: - TypeCode (97.01) setting	$\begin{aligned} & 9.02, \\ & \text { bit } 8 \end{aligned}$	always	1
F526	526 ExternalDI	External fault via binary input: There is no problem with the drive itself! Check: - ExtFaultSel (30.31), ExtFaultOnSel (30.33)	$\begin{aligned} & 9.02, \\ & \mathrm{bit} 9 \end{aligned}$	Always or RdyRun = 1	1
F527	527 ConvFanAck	Converter fan acknowledge missing: Check: - ConvFanAck (10.20) - converter fan contactor - converter fan circuit - converter fan klixon - converter fan supply voltage - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 10 \end{aligned}$	RdyRun = 1	4

$\left\|\begin{array}{c} 7- \\ \text { segment } \\ \text { display } \end{array}\right\|$	Text on control panel, DriveWindow and DriveWindow Ligh	Definition / Action	Faultword	Fault is active when	[100
F528	528 FieldBusCom	Fieldbus communication loss: F528 FieldBusCom is only activated after the first dataset from the overriding control is received by the drive. Before the first dataset is received only A128 FieldBusCom is active. The reason is to suppress unnecessary faults (the starts up of the overriding control is usually slower than the one of the drive). Check: - CommandSel (10.01), ComLossCtrl (30.28), FB TimeOut (30.35), CommModule (98.02) - parameter settings of group 51 (fieldbus) - fieldbus cable - fieldbus termination - fieldbus adapter	$\begin{array}{\|l\|} \hline 9.02, \\ \text { bit } 11 \end{array}$	$\begin{aligned} & \text { always if } F B \\ & \text { TimeOut } \\ & (30.35) \neq 0 \end{aligned}$	5
F529	529 M1FexNotOK	Motor 1 field exciter not okay: A fault was found during self-diagnosis of field exciter or power failure in field exciter 1. Check: - field exciter operation and change the field exciter, if necessary - fault message of or at field exciter (7-segment display or flashing LED's)	9.02, $\text { bit } 12$	always	$\begin{array}{r}1 \\ \\ \\ \\ \hline\end{array}$
F530	530 M2FexNotOK	Motor 2 field exciter not okay: A fault was found during self-diagnosis of field exciter or power failure in field exciter 2. Check: - field exciter operation and change the field exciter, if necessary - fault message of or at field exciter (7-segment display or flashing LED's)	$9.02,$ $\text { bit } 13$	always	1
F531	531 MotorStalled	Selected motor, motor stalled: The motor torque exceeded StallTorq (30.03) for a time longer than StallTime (30.01) while the speed feedback was below StallSpeed (30.02) . Check: - motor stalled (mechanical couplings of the motor) - proper conditions of load - correct field current - parameter settings of group 20 (limits: current and torque limits)	$9.02,$ $\text { bit } 14$	RdyRef = 1	3

	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F532	$\begin{aligned} & \hline 532 \\ & \text { MotOverSpeed } \end{aligned}$	Selected motor, motor overspeed: Check: - M1OvrSpeed (30.16) - parameter settings of group 24 (speed control: speed controller) - scaling of speed controller loop [SpeedScaleAct (2.29)] - drive speed [MotSpeed (1.04)] vs. measured motor speed (hand held tacho) - field current - speed feedback (encoder, tacho) - connection of speed feedback - if the motor was accelerated by the load - in case of EMF control if the DC-voltage measurement (C1, D1) might be swapped	$\begin{aligned} & 9.02, \\ & \text { bit } 15 \end{aligned}$	always	3
F533	533 ReversalTime	Reversal time: Current direction not changed before ZeroCurTimeOut (97.19) plus RevDly (43.14) is elapsed or $12 P$ RevTimeOut (47.05) is elapsed. Check: - for high inductive motor - too high motor voltage compared to mains voltage	$\begin{aligned} & 9.03, \\ & \text { bit } 0 \end{aligned}$	RdyRef $=1$	3
F534	534 12PCurDiff	12-pulse current difference (only for 12-pulse parallel operation): Check: - DiffCurLim (47.02) , DiffCurDly (47.03) - parameter settings of group 43 (current control: armature current controller),	$\begin{aligned} & 9.03, \\ & \text { bit } 1 \end{aligned}$	always	3
F535	535 12PCom	12-pulse communication: Check: - 12P TimeOut (94.03) - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01), 12P SlaNode (94.04)]	$\begin{aligned} & \hline 9.03, \\ & \text { bit } 2 \end{aligned}$	RdyOn = 1	3
F536	536 12PSlaveFail	12-pulse slave failure: 12-pulse master is tripped by a fault of the 12-pulse slave. Check: - Fault logger of 12-pulse slave	$\begin{aligned} & 9.03, \\ & \text { bit } 3 \end{aligned}$	RdyOn = 1	4
F537	$\begin{aligned} & 537 \\ & \text { M1FexRdyLost } \end{aligned}$	Motor 1 field exciter ready lost: Field exciter lost ready-for-operation message while working. AC-voltage missing or not in synchronism. Check: - if all phases are present - if the mains voltage is within the set tolerance - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 4 \end{aligned}$	RdyRun = 1	1

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F538	538 M2FexRdyLost	Motor 2 field exciter ready lost: Field exciter lost ready-for-operation message while working. AC-voltage missing or not in synchronism. Check: - if all phases are present - if the mains voltage is within the set tolerance - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit 5 } \end{aligned}$	RdyRun = 1	1
F539	539 FastCurRise	Fast current rise: Actual current di/dt too fast. Check: - ArmCurRiseMax (30.10)	$\begin{aligned} & 9.03, \\ & \text { bit } 6 \end{aligned}$	$\begin{aligned} & \text { RdyRef =1 } \\ & \text { and } \\ & \text { generating } \end{aligned}$	1
F540	540 COM8Faulty	SDCS-COM-8 faulty or not found: Check: - SysComBoard (98.16) - and change SDCS-COM-8 and / or SDCS-CON4	$\begin{aligned} & 9.03, \\ & \text { bit } 7 \end{aligned}$	RdyOn = 1	1
F541	$\begin{aligned} & 541 \\ & \text { M1FexLowCur } \end{aligned}$	Motor 1 field exciter low (under-) current: Check: - M1FldMinTrip (30.12) , FldMinTripDly (45.18) - parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization) - motor name plate for minimum current at maximum field weakening (maximum speed) - field circuit fuses - if the field current oscillates - if the motor has a high armature reaction - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 8 \end{aligned}$	always	1
F542	$\begin{aligned} & 542 \\ & \text { M2FexLowCur } \end{aligned}$	Motor 2 field exciter low (under-) current: Check: - M2FldMinTrip (49.08) , FldMinTripDly (45.18) - parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization) - motor name plate for minimum current at maximum field weakening (maximum speed) - field circuit fuses - if the field current oscillates - if the motor has a high armature reaction - fault message of or at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 9 \end{aligned}$	always	1

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F543	543 COM8Com	Communication between SDCS-COM-8 and overriding control respectively master-follower link: Check: - CommandSel (10.01), Ch0ComLossCtrl (70.05), Ch0TimeOut (70.04), Ch2ComLossCtrl (70.15), Ch2TimeOut (70.14) - fiber optic cables to overriding control (channel 0), - overriding control adapters, - fiber optic cables between master and followers (channel 2)	$\begin{aligned} & 9.03, \\ & \text { bit } 10 \end{aligned}$	RdyOn = 1	5
F544	$\begin{aligned} & \hline 544 \\ & \text { P2PandMFCom } \end{aligned}$	Peer to peer respectively master-follower link communication loss: Check: - ComLossCtrl (30.28), MailBox1 (94.12), MailBox2 (94.18), MailBox3 (94.24), MailBox4 (94.30), MailBoxCycle1 (94.13), MailBoxCycle2 (94.19), MailBoxCycle3 (94.25), MailBoxCycle4 (94.31) - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01)]	9.03, bit 11	always	5
F545	545 AppILoadFail	Application load failure: Check: - Diagnosis (9.11)	$\begin{aligned} & 9.03, \\ & \text { bit } 12 \end{aligned}$	always	1
F546	546 LocalCmdLoss	Local command loss: Communication fault with control panel, DriveWindow or DriveWindow Light during local mode. Check: - LocalLossCtrl (30.27) - if control panel is disconnected, - connection adapter - cables	$\begin{aligned} & 9.03, \\ & \text { bit } 13 \end{aligned}$	local	5
F547	547 HwFailure	Hardware failure: For more details check Diagnosis (9.11).	$\begin{aligned} & 9.03, \\ & \text { bit } 14 \end{aligned}$	always	1
F548	548 FwFailure	Firmware failure: For more details check Diagnosis (9.11).	$\begin{aligned} & 9.03, \\ & \text { bit } 15 \end{aligned}$	always	1
F549	549 ParComp	Parameter compatibility: When setting parameters or during power-up the firmware attempts to write their values. If the setting is not possible or not compatible the parameter is set to default. The parameters causing the fault can be identified in Diagnosis (9.11). Check: - parameter setting	$\begin{aligned} & 9.04, \\ & \text { bit } 0 \end{aligned}$	always	1

	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F550	550 ParMemRead	Parameter Memory Card read: Reading the actual parameter set or a user parameter set from either parameter flash or Memory Card failed (checksum fault) Check: - Memory Card and - SDCS-CON-4	$\begin{aligned} & 9.04, \\ & \text { bit } 1 \end{aligned}$	always	1
F551	551 AIRange	Analog input range: Undershoot of one of the analog input values under $4 \mathrm{~mA} / 2 \mathrm{~V}$. Check: - AI Mon4mA (30.29) - used analog inputs connections and cables - polarity of connection	$\begin{aligned} & 9.04, \\ & \text { bit } 2 \end{aligned}$	always	4
F552	552 MechBrake	Selected motor, mechanical brake: Acknowledge brake applied (closed) is missing or torque actual does not reach StrtTorqRef (42.08), during torque proving. Check: - BrakeFaultFunc (42.06) , StrtTorqRefSel (42.07) - brake - brake cabling - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.04, \\ & \text { bit } 3 \end{aligned}$	always	3
F553	553 TachPolarity	Selected motor, tacho polarity: Polarity of analog tacho signal incorrect. Check: - polarity of tacho cable - polarity of armature and field cables - direction of motor rotation	$\begin{aligned} & 9.04, \\ & \text { bit } 4 \end{aligned}$	always	3
F554	554 TachoRange	Selected motor, tacho range: Overflow of AITacho input Check: - for the right connections (X3:1 to X3:4) on the SDCS-CON-4	$\begin{aligned} & 9.04, \\ & \text { bit } 5 \end{aligned}$	always	3
F601	601 APFault1	User defined fault by Adaptive Program	$\begin{aligned} & 9.04, \\ & \text { bit } 11 \end{aligned}$	always	1
F602	602 APFault2	User defined fault by Adaptive Program	$\begin{aligned} & 9.04, \\ & \text { bit } 12 \end{aligned}$	always	1
F603	603 APFault3	User defined fault by Adaptive Program	$\begin{aligned} & 9.04, \\ & \text { bit } 13 \end{aligned}$	always	1
F604	604 APFault4	User defined fault by Adaptive Program	9.04 $\text { bit } 14$	always	1
F605	605 APFault5	User defined fault by Adaptive Program	$\begin{aligned} & 9.04, \\ & \text { bit } 15 \end{aligned}$	always	1
F610	610 UserFault1	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 0 \end{aligned}$	always	1
F611	611 UserFault2	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 1 \end{aligned}$	always	1
F612	612 UserFault3	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 2 \end{aligned}$	always	1

$\begin{array}{c\|} \hline 7- \\ \text { segment } \\ \text { display } \end{array}$	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F613	613 UserFault4	User defined fault by application program	$9.05,$ $\text { bit } 3$	always	1
F614	614 UserFault5	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 4 \end{aligned}$	always	1
F615	615 UserFault6	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 5 \end{aligned}$	always	1
F616	616 UserFault7	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 6 \end{aligned}$	always	1
F617	617 UserFault8	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 7 \end{aligned}$	always	1
F618	618 UserFault9	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 8 \end{aligned}$	always	1
F619	619 UserFault10	User defined fault by application program	$\begin{aligned} & \hline 9.05, \\ & \text { bit } 9 \\ & \hline \end{aligned}$	always	1
F620	620 UserFault11	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 10 \end{aligned}$	always	1
F621	621 UserFault12	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 11 \end{aligned}$	always	1
F622	622 UserFault13	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 12 \end{aligned}$	always	1
F623	623 UserFault14	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 13 \end{aligned}$	always	1
F624	624 UserFault15	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 14 \end{aligned}$	always	1
F625	625 UserFault16	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 15 \end{aligned}$	always	1

Alarm signals (A)

An alarm is a message, that a condition occurred, which may lead to a dangerous situation. It is displayed and written into the fault logger. However, the cause for the alarm can inhibit the drive from continuing with normal operation. If the cause of the alarm disappears the alarm will be automatically reset.

The alarm handling must provides 4 alarm levels.

Alarm level 1:

- the main contactor cannot be switched on again, after the drive stopped (no restart possible)

Alarm level 2:

- fan contactor stays on as long as the alarm is pending
- if the alarm disappears FanDly (21.14) will start

Alarm level 3:

- AutoReclosing (auto re-start) is [AuxStatWord (8.02) bit 15] active
- RdyRun [MainStatWord (8.01) bit 1] is disabled, but the drive is automatically restarted when the alarm condition vanishes
- α is set to 150°
- single firing pulses

Alarm level 4:

- drive keeps on running and the alarm is indicated

7segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A101	101 Off2ViaDI	Off2 (Emergency Off / Coast stop) pending via digital input - start inhibition: There is no problem with the drive itself! Check: - Off2 (10.08), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 0 \end{aligned}$	RdyRun = 1	1
A102	102 Off3ViaDI	Off3 (E-stop) pending via digital input: There is no problem with the drive itself! Check: - E Stop (10.09), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 1 \end{aligned}$	RdyRun = 1	1
A103	103 DCBreakAck	Selected motor, DC-Breaker acknowledge missing: α is set to 150° and single firing pulses are given, thus the drive cannot be started or re-started while the DCbreaker acknowledge is missing. Check: - DCBreakAck (10.23), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 2 \end{aligned}$	RdyRun = 1	3
A104	104 ConvOverTemp	Converter overtemperature: Wait until the converter is cooled down. Shutdown temperature see MaxBridgeTemp (4.17) . The converter overtemperature alarm will already appear at approximately $5^{\circ} \mathrm{C}$ below the shutdown temperature. Check: - ConvFanAck (10.20) - converter door open - converter fan supply voltage - converter fan direction of rotation - converter fan components - converter cooling air inlet (filter) - ambient temperature - inadmissible load cycle - connector X12 on SDCS-CON-4 - connector X12 and X22 on SDCS-PIN-4/51	$\begin{aligned} & 9.06, \\ & \text { bit } 3 \end{aligned}$	always	2
A105	105 DynBrakeAck	Selected motor, dynamic braking is still pending: α is set to 150° and single firing pulses are given, thus the drive cannot be started or re-started while dynamic braking is active. Check: - DynBrakeAck (10.22)	$\begin{aligned} & 9.06, \\ & \text { bit } 4 \end{aligned}$	RdyRun = 1	1

Fault tracing

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	\|los
A106	106 M1OverTemp	Motor 1 measured overtemperature: Check: - M1AlarmLimTemp (31.06) - motor temperature - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (filter) - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.06, \\ & \text { bit } 5 \end{aligned}$	always	2
A107	107 M1OverLoad	Motor 1 calculated overload: Check: - M1AlarmLimLoad (31.04)	$\begin{aligned} & 9.06, \\ & \text { bit } 6 \end{aligned}$	always	2
A109	109 M2OverTemp	Motor 2 measured overtemperature: Check: - M2AlarmLimTemp (49.36) - motor temperature - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (filter) - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.06, \\ & \text { bit } 8 \end{aligned}$	always	2
A110	110 M2OverLoad	Motor 2 calculated overload: Check: - M2AlarmLimLoad (49.33)	$\begin{aligned} & 9.06, \\ & \text { bit } 9 \end{aligned}$	always	2
A111	111 MainsLowVolt	Mains low (under-) voltage (AC): α is set to 150°; single firing pulses Check: - PwrLossTrip (30.21), UNetMin1 (30.22), UNetMin2 (30.23), - If all 3 phases are present - if the mains voltage is within the set tolerance - if the main contactor closes and opens - if the mains voltage scaling is correct [NomMainsVolt (99.10)] - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51	$\begin{aligned} & 9.06, \\ & \text { bit } 10 \end{aligned}$	RdyRun = 1	3

$\begin{array}{\|c\|} \hline 7- \\ \text { segment } \\ \text { display } \end{array}$	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	¢
A112	$\begin{aligned} & \hline 112 \\ & \text { P2PandMFCom } \end{aligned}$	Peer to peer and master-follower communication loss: Check: - ComLossCtrl (30.28), MailBox1 (94.12), MailBox2 (94.18), MailBox3 (94.24), MailBox4 (94.30), MailBoxCycle1 (94.13), MailBoxCycle2 (94.19), MailBoxCycle3 (94.25), MailBoxCycle4 (94.31) - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01)]	$\begin{aligned} & 9.06, \\ & \text { bit } 11 \end{aligned}$	always	
A113	113 COM8Com	SDCS-COM-8 communication (overriding control and master-follower): Check: - Ch0ComLossCtrl (70.05), ChOTimeOut (70.04), Ch2ComLossCtrl (70.15), Ch2TimeOut (70.14) - fiber optic cables to overriding control (channel 0) - overriding control adapters - fiber optic cables between master and followers (channel 2)	$\begin{aligned} & 9.06, \\ & \text { bit } 12 \end{aligned}$	always	4
A114	114 ArmCurDev	Armature Current Deviation: Is shown, if the current reference [CurRefUsed (3.12)] differs from current actual [MotCur (1.06)] for longer than 5 sec by more than 20% of nominal motor current. α is set to 150°; single firing pulses Check: - ratio between mains supply voltage and EMF - ArmAlphaMin (20.15) is set too high	9.06, bit 13	RdyRef = 1	3
A115	115 TachoRange	Selected motor, tacho range: If A115 TachoRange comes up for longer than 10 seconds there is an overflow of the AITacho input. Check: for the right connections ($\mathrm{X} 3: 1$ to $\mathrm{X} 3: 4$) on the SDCS-CON-4 If A115 TachoRange comes up for 10 seconds and vanishes again M1OvrSpeed (30.16) or M2OvrSpeed (49.21) has been changed. In this case a new tacho fine tuning has to be done [ServiceMode (99.06) = TachFineTune].	$\begin{aligned} & 9.06, \\ & \text { bit } 14 \end{aligned}$	always	4

$\left\|\begin{array}{c} 7- \\ \text { segment } \\ \text { display } \end{array}\right\|$	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A117	117 ArmCurRipple	Armature current ripple: One or several thyristors may carry no current. Check: - CurRippleSel (30.18) ,CurRippleLim (30.19) - for too high gain of current controller [M1KpArmCur (43.06)] - current feedback with oscilloscope (6 pulses within one cycle visible?) - branch fuses - thyristor gate-cathode resistance - thyristor gate connection - current transformers (T51, T52)	$\begin{aligned} & \text { 9.07, } \\ & \text { bit } 0 \end{aligned}$	RdyRef $=1$	4
A118	118 FoundNewAppl	Found new application on Memory Card: Activate application on Memory Card by means of ParSave (16.06) = EableAppl	$\begin{aligned} & \text { 9.07, } \\ & \text { bit } 1 \end{aligned}$	directly after energizing of auxiliary supply	1
A119	119 ApplDiff	Application on drive and Memory Card are different: Activate application on Memory Card by means of ParSave (16.06) = EableAppl	$\begin{aligned} & \text { 9.07, } \\ & \text { bit } 2 \end{aligned}$	directly after energizing of auxiliary supply	1
A120	120 OverVoltProt	Overvoltage protection active: Overvoltage protection DCF806 is active and converter is blocked. α is set to 150°; single firing pulses Check: - OvrVoltProt (10.13) if necessary invert the signal (group 10) - field converter cables and connections	$\begin{aligned} & 9.07, \\ & \text { bit } 3 \end{aligned}$	always	3
A121	121 AutotuneFail	Autotuning failed: For more details check Diagnosis (9.11) To clear the alarm set ServiceMode (99.06) = NormalMode	$\begin{aligned} & 9.07, \\ & \text { bit } 4 \end{aligned}$	always	4
A122	122 MechBrake	Selected motor, mechanical brake: Acknowledge brake applied (closed) is missing or torque actual does not reach StrtTorqRef (42.08), during torque proving. Check: - BrakeFaultFunc (42.06) , StrtTorqRefSel (42.07) - brake - brake cabling - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.07, \\ & \text { bit } 5 \end{aligned}$	always	4
A123	123 FaultSuppres	Fault suppressed: At least one fault message is mask. Check: - FaultMask (30.25)	$\begin{aligned} & \hline 9.07, \\ & \text { bit } 6 \end{aligned}$	always	4

Fault tracing

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A124	124 SpeedScale	Speed scaling out of range: The parameters causing the alarm can be identified in Diagnosis (9.11). α is set to 150°; single firing pulses Check: - M1SpeedMin (20.01), M1SpeedMax (20.02), M2BaseSpeed (49.03), M2SpeedMin (49.19), M2SpeedMax (49.20), M2SpeedScale (49.22), M1SpeedScale (50.01), M1BaseSpeed (99.04)	$\begin{aligned} & 9.07, \\ & \text { bit } 7 \end{aligned}$	always	3
A125	125 SpeedFb	Selected motor, speed feedback: The comparison of the speed feedback from pulse encoder or analog tacho has failed. Check: - M1SpeedFbSel (50.03) , SpeedFbFltMode (30.36) , SpeedFbFItSel (30.17) - pulse encoder: encoder itself, alignment, cabling, coupling, power supply (feedback might be too low), mechanical disturbances - analog tacho: tacho itself, tacho polarity and voltage, alignment, cabling, coupling, mechanical disturbances, jumper S1 on SDCS-CON-4 - EMF: connection converter - armature circuit closed - SDCS-CON-4, SDCS-IOB-3, SDCS-POW-4	$\begin{aligned} & 9.07, \\ & \text { bit } 8 \end{aligned}$	always	4
A126	126 ExternaIDI	External alarm via binary input: There is no problem with the drive itself! Check: - ExtAlarmSel (30.32), alarm = 0, ExtAlarmOnSel (30.34)	$\begin{aligned} & \text { 9.07, } \\ & \text { bit } 9 \end{aligned}$	always	4
A127	127 AIRange	Analog input range: Undershoot of one of the analog input values under $4 \mathrm{~mA} / 2 \mathrm{~V}$. Check: - AI Mon4mA (30.29) - used analog inputs connections and cables - polarity of connection	$\begin{aligned} & 9.07, \\ & \text { bit } 10 \end{aligned}$	always	4
A128	128 FieldBusCom	Fieldbus communication loss: F528 FieldBusCom is only activated after the first dataset from the overriding control is received by the drive. Before the first dataset is received only A128 FieldBusCom is active. The reason is to suppress unnecessary faults (the starts up of the overriding control is usually slower than the one of the drive). Check: - ComLossCtrl (30.28) , FB TimeOut (30.35), CommModule (98.02) - parameter settings of group 51 (fieldbus) - fieldbus cable - fieldbus termination - fieldbus adapter	$\begin{aligned} & 9.07 \\ & \text { bit } 11 \end{aligned}$	always if $F B$ TimeOut $(30.35) \neq 0$	4

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	产
A129	129 ParRestored	Parameter restored: The parameters found in the flash memory were invalid at power-up (checksum fault). All parameters were restored from the parameter backup.	$\begin{aligned} & 9.07, \\ & \text { bit } 12 \end{aligned}$	always	4
A130	$\begin{aligned} & 130 \\ & \text { LocalCmdLoss } \end{aligned}$	Local command loss: Connection fault with control panel, DriveWindow or DriveWindow Light. Check: - LocalLossCtrl (30.27) - if control panel is disconnected - connection adapter - cables	$\begin{aligned} & 9.07, \\ & \text { bit } 13 \end{aligned}$	local	4
A131	131 ParAdded	Parameter added: A new firmware with a different amount of parameters was downloaded. The new parameters are set to their default values. The parameters causing the alarm can be identified in Diagnosis (9.11). Check: - new parameters and set them to the desired values	$\begin{aligned} & 9.07, \\ & \text { bit } 14 \end{aligned}$	after download of firmware for max. 10 s	4
A132	132 ParConflict	Parameter setting conflict: Is triggered by parameter settings conflicting with other parameters. The parameters causing the alarm can be identified in Diagnosis (9.11).	$\begin{aligned} & 9.07, \\ & \text { bit } 15 \end{aligned}$	always	4
A134	134 ParComp	Parameter compatibility: When downloading parameter sets the firmware attempts to write the parameters. If the setting is not possible or not compatible the parameter is set to default. The parameters causing the alarm can be identified in Diagnosis (9.11) . Check: - parameter setting	9.08, $\text { bit } 1$	after download of a parameter set for max. 10 s	4
A135	$\begin{aligned} & 135 \\ & \text { ParUpDwnLoad } \end{aligned}$	Parameter up- or download failed: The checksum verification failed during up- or download of parameters. Please try again. Two or more parameter set actions were requested at the same time. Please try again.	$\begin{aligned} & 9.08, \\ & \text { bit } 2 \end{aligned}$	after up- or download of parameters for max. 10 s	4
A136	$\begin{array}{\|l\|} \hline 136 \\ \text { NoAPTaskTime } \end{array}$	Adaptive program task time not set: The task time for the Adaptive Program is not set, while the Adaptive Program is started. Check: - that TimeLevSel (83.04) is set to $5 \mathrm{~ms}, \mathbf{2 0 m s}$, 100 ms or 500 ms when AdapProgCmd (83.01) is set to Start, SingleCycle or SingleStep	$\begin{aligned} & 9.08, \\ & \text { bit } 3 \end{aligned}$	always	4

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A137	$\begin{aligned} & 137 \\ & \text { SpeedNotZero } \end{aligned}$	Speed not zero: Re-start of drive is not possible. Speed zero has not been reached [only in case FlyStart (21.10) = StartFrom0]. Check: - ZeroSpeedLim (20.03) - FlyStart (21.10) - M1SpeedFbSel (50.03) - M2SpeedFbSel (49.24)	$\begin{aligned} & 9.08, \\ & \text { bit } 4 \end{aligned}$	Not active if RdyRef $=1$	1
A138	138 Off2FieldBus	Off2 (Emergency Off / Coast Stop) pending via MainCtrIWord (7.01)/ fieldbus - start inhibition: There is no problem with the drive itself! Check: - MainCtrIWord (7.01) bit1 Off2N	$\begin{aligned} & 9.08, \\ & \text { bit 5 } \end{aligned}$	RdyRun = 1	1
A139	139 Off3FieldBus	Off3 (E-stop) pending via MainCtrIWord (7.01)/ fieldbus: There is no problem with the drive itself! Check: - MainCtrIWord (7.01) bit2 Off3N	$\begin{aligned} & 9.08, \\ & \text { bit } 6 \end{aligned}$	RdyRun = 1	1
A140	140 IllgFieldBus	Illegal fieldbus settings: The fieldbus parameters in group 51 (fieldbus) are not set according to the fieldbus adapter or the device has not been selected. Check: - group 51 (fieldbus) - configuration of fieldbus adapter	$\begin{aligned} & 9.08, \\ & \text { bit } 7 \end{aligned}$	always	4
A141	141 COM8FwVer	SDCS-COM-8 firmware version conflict: Invalid combination of SDCS-CON-4 firmware and SDCS-COM-8 firmware. Check: - for valid combination of SDCS-CON-4 [FirmwareVer (4.01)] and SDCS-COM-8 [Com8SwVersion (4.11)] firmware version according to the release notes	$\begin{aligned} & 9.08, \\ & \text { bit } 8 \end{aligned}$	always	4
A142	142 MemCardMiss	Memory Card missing: There is an application loaded in the drive. The Memory Card belonging to the application is not found. Check: - if the Memory Card is properly plugged into the SDCS-CON-4 (X20) - de-energize the electronics, insert the proper Memory Card and reenergize - ParSave (16.06)	$\begin{aligned} & 9.08, \\ & \text { bit } 9 \end{aligned}$	directly after energizing of electronics	1
A143	143 MemCardFail	Memory Card failure: Checksum failure or wrong Memory Card Check: - Memory Card - if proper ABB Memory Card is used - ParSave (16.06)	$\begin{aligned} & 9.08, \\ & \text { bit } 10 \end{aligned}$	directly after energizing of electronics	1

$7-$ segment display	Text on control panel, DriveWindow and DriveWindow Light	Definition / Action	Alarm word	Alarm is active when	
A301	301 APAlarm1	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 11 \end{aligned}$	always	4
A302	302 APAlarm2	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 12 \end{aligned}$	always	4
A303	303 APAlarm3	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 13 \\ & \hline \end{aligned}$	always	4
A304	304 APAlarm4	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 14 \end{aligned}$	always	4
A305	305 APAlarm5	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 15 \end{aligned}$	always	4
A310	310 UserAlarm1	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 0 \end{aligned}$	always	4
A311	311 UserAlarm1	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 1 \end{aligned}$	always	4
A312	312 UserAlarm2	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 2 \end{aligned}$	always	4
A313	313 UserAlarm3	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 3 \end{aligned}$	always	4
A314	314 UserAlarm4	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 4 \end{aligned}$	always	4
A315	315 UserAlarm5	User defined fault by application program	$\begin{aligned} & 9.09 \\ & \text { bit } 5 \end{aligned}$	always	4
A316	316 UserAlarm6	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 6 \end{aligned}$	always	4
A317	317 UserAlarm7	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 7 \end{aligned}$	always	4
A318	318 UserAlarm8	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 8 \end{aligned}$	always	4
A319	319 UserAlarm9	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 9 \end{aligned}$	always	4
A320	320 UserAlarm10	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 10 \end{aligned}$	always	4
A321	321 UserAlarm11	User defined fault by application program	$\begin{aligned} & 9.09 \\ & \text { bit } 11 \end{aligned}$	always	4
A322	322 UserAlarm12	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 12 \end{aligned}$	always	4
A323	323 UserAlarm13	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 13 \end{aligned}$	always	4
A324	324 UserAlarm14	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 14 \end{aligned}$	always	4
A325	325 UserAlarm16	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 15 \end{aligned}$	always	4

Appendix A: Firmware structure diagram

TORQUE CONTROL CHAIN

Appendix B: Index of signals and parameters

Index of signals and parameters (alphabetic order)

12P Mode	182	ApplicVer	71
12P RevTimeOut	183, 273	ApplLoad	75
12P SlaNode	216, 273	ApplMacro	234, 244
12P TimeOut	216, 273	AppIRestore	234
$2{ }^{\text {nd }}$ LastFault	101	ArmAlpha	68
$3{ }^{\text {rd }}$ LastFault	101	ArmAlphaMax	133
AccCompDerTime	145	ArmAlphaMin	133, 281
AccCompFiltTime	145	ArmAlphaSI	68
AccTime1	137	ArmCurActSI	63
AccTime2	138	ArmCurAll	63
AdapPrgStat	202	ArmCurLimSpeed1	171
AdapProgCmd	200, 284	ArmCurLimSpeed2	171
AdjIDC	223	ArmCurLimSpeed3	172
AdjUDC	226	ArmCurLimSpeed4	172
AhCounter	64	ArmCurLimSpeed5	172
Al Mon4mA	160, 251, 276, 283	ArmCurRiseMax	155, 260, 274
Al1 Val	76	ArmOvrCurLev	154, 246, 266
Al1HighVal	23, 118	ArmOvrVoltLev	154, 252, 266
Al1LowVal	23, 118	ArmVoltAct	62
Al2 Val	76	ArmVoltActRel	62
Al2HighVal	119	AuxCtrlWord	83
Al2LowVal	119	AuxCtriWord2	84
Al3 Val	76	AuxSpeedRef	142
Al3HighVal	119	AuxStatWord	87
Al3LowVal	119	BalRampRef	138
Al4 Val	76	BalRef	145
Al4HighVal	120	BaudRate	195, 216
Al4LowVal	120	Block100ut	207
Al5 Val	76	Block11Out	207
Al5HighVal	121	Block12Out	208
Al5LowVal	121	Block130ut	208
Al6 Val	76	Block14Out	208
Al6HighVal	23, 122	Block15Out	208
Al6LowVal	23, 123	Block16Out	208
AIO ExtModule	21, 25, 230, 267	Block1Attrib	204
AIO MotTempMeas	21, 25, 231, 267	Block1ln1	203
AlTacho Val	76	Block1In2	204
AlarmWord1	95, 262	Block1In3	204
AlarmWord2	96, 262	Block1Out	206
AlarmWord3	97, 262	Block1Output	204
AO1 Val	76	Block1Type	203
AO2 Val	76	Block2Out	207
ApplicName	69	Block3Out	207

Block4Out	207	Constant8	206
Block5Out	207	Constant9	206
Block6Out	207	ConstSpeed1	117
Block7Out	207	ConstSpeed2	117
Block8Out	207	ConstSpeed3	118
Block9Out	207	ConstSpeed4	118
BrakeEStopMode	167	ControlModeSel	168
BrakeFaultFunc	166, 276, 282	ConvCurAct	62
BreakPoint	201	ConvCurActRel	62, 258
BridgeTemp	63, 246	ConvFanAck	16, 110, 250, 271, 279
Cho BaudRate	196	ConvModeAl1	23, 118
Ch0 ComLossCtrl	197	ConvModeAI2	119
Ch0 DriveBus	200	ConvModeAl3	120
Ch0 DsetBaseAdd	dr 199	ConvModeAI4	120
CHO HW Config	197	ConvModeAI5	122
Ch0 LinkControl	196	ConvModeAI6	23, 123
Ch0 NodeAddr	196	ConvModeAO1	26, 125
Ch0 TimeOut	196	ConvModeAO2	126
Ch0ComLossCtrl	275, 281	ConvModeAO3	126
ChOTimeOut	275, 281	ConvModeAO4	26, 127
Ch1 LinkControl	197	ConvModeTacho	121
Ch2 ComLossCtrl	198	ConvNomCur	70
Ch2 FolSig1	198	ConvNomVolt	70
Ch2 FolSig2	199	ConvOvrCur	72, 246
Ch2 FolSig3	199	ConvScaleCur	221
Ch2 LinkControl	198	ConvTempDly	222, 246, 268
Ch2 MaFoMode	197	ConvType	71
Ch2 MasSig1	198	CPU Load	75
Ch2 MasSig2	198	CtriMode	63
Ch2 MasSig3	198	CtrlStatMas	79
Ch2 NodeAddr	197	CtrIStatSla	80
Ch2 TimeOut	198	CtrlWordAO1	26, 125
Ch2ComLossCtrl	275, 281	CtrlWordAO2	125
Ch2TimeOut	275, 281	CtrlWordAO3	126
Ch3 HW Config	199	CtriWordAO4	26, 127
Ch3 LinkControl	199	CurCtrlintegOut	69
Ch3 NodeAddr	199	CurCtrlStat1	77
Com8SwVersion	71,285	CurCtrlStat2	78
ComLossCtrl 1	159, 249, 272, 275, 281, 283	CurRef	68
CommandSel	102, 239, 272, 275	CurRefExt	168
CommModule	227, 267, 272, 283	CurRefSlope	168
CompUkPLL	223	CurRefUsed	68, 281
Constant1	205	CurRipple	61, 258
Constant10	206	CurRippleFilt	61, 258
Constant2	205	CurRippleLim	156, 258, 270, 282
Constant3	205	CurRippleSel	156, 258, 270, 282
Constant4	205	CurSel	22, 168
Constant5	205	Data1	130
Constant6	205	Data10	130
Constant7	205	Data11	130

Data12	130	DispParam3Set	239
Data2	130	DO CtrlWord	19, 85
Data3	130	DO StatWord	19, 89
Data4	130	DO1BitNo	123
Data5	130	DO1Index	19, 123
Data6	130	DO2BitNo	123
Data7	130	DO2Index	123
Data8	130	DO3BitNo	124
Data9	130	DO3Index	124
DataLogStatus	67	DO4BitNo	124
DC BreakAck	16, 110	DO4Index	124
DC VoltSerAll	64	DO5BitNo	124
DCBreakAck	279	DO5Index	124
DCSLinkNodeID2	6, 270, 273, 275,	DO6BitNo	124
281		DO6Index	124
DCSLinkStat1	73	DO7BitNo	124
DCSLinkStat2	74	DO7Index	124
DecMonDly	135	DO8BitNo	124
DecTime1	137	DO8Index	19, 124
DecTime2	139	DriveLibVer	71
DerivFiltTime	145	DriveStat	89
DerivTime	145	DroopRate	144
DeviceName	234	DsetXplus10Val1	209
DeviceNumber	234	DsetXplus10Val2	210
DevLimPLL	223, 248, 269	DsetXplus10Val3	210
DI StatWord	16, 88	DsetXplus11Val1	212
DI1OInvert	111	DsetXplus11Val2	212
D111Invert	16, 111	DsetXplus11Val3	212
DI1Invert	16, 110	DsetXplus12Val1	210
DI2Invert	110	DsetXplus12Val2	210
DI3Invert	111	DsetXplus12Val3	210
DI4Invert	111	DsetXplus13Val1	212
DI5Invert	111	DsetXplus13Val2	212
DI6Invert	111	DsetXplus13Val3	212
DI7Invert	111	DsetXplus14Val1	210
DI8Invert	111	DsetXplus14Val2	210
DI9Invert	111	DsetXplus14Val3	210
Diagnosis	99, 275, 284	DsetXplus15Val1	212
DiffCurDly	183, 273	DsetXplus15Val2	213
DiffCurLim	183, 273	DsetXplus15Val3	213
DIO ExtModule	267	DsetXplus1Val1	211
DIO ExtModule1	15, 18, 228	DsetXplus1Val2	211
DIO ExtModule2	15, 18, 229, 267	DsetXplus1Val3	211
Direction	16, 102	DsetXplus2Val1	208
DirectSpeedRef	143	DsetXplus2Val2	209
DispParam1Sel	164	DsetXplus2Val3	209
DispParam1Set	239	DsetXplus3Val1	211
DispParam2Sel	164	DsetXplus3Val2	211
DispParam2Set	239	DsetXplus3Val3	211
DispParam3Sel	164	DsetXplus4Val1	209

DsetXplus4Val2	209	FexTimeOut	216, 269, 270
DsetXplus $4 \mathrm{Val3}$	209	Fieldbus1	194
DsetXplus5Val1	211	Fieldbus15	194
DsetXplus5Val2	211	Fieldbus16	194
DsetXplus5Val3	211	Fieldbus31	194
DsetXplus6Val1	209	FilterAl1	119
DsetXplus6Val2	209	FilterAI2	119
DsetXplus6Val3	209	FilterAl3	120
DsetXplus7Val1	211	FilterAI4	120
DsetXplus7Val2	211	FilterAO1	125
DsetXplus7Val3	211	FilterAO2	126
DsetXplus8Val1	209	FilterAO3	126
DsetXplus8Val2	209	FilterAO4	127
DsetXplus8Val3	209	FiringLimMode	170
DsetXplus9Val1	212	FirmwareVer	69, 285
DsetXplus9Val2	212	FixedSpeed1	140
DsetXplus9Val3	212	FixedSpeed2	140
DsetXVal1	208	FldBoostFact	175
DsetXVal2	208	FldBoostSel	16, 175
DsetXVal3	208	FldBoostTime	175
dv_dt	65	FldCtrlAlarm	79
DynBrakeAck	16, 110, 279	FldCtrIMode	173
DynBrakeDly	193	FldCurFlux40	174
E Stop	16, 105, 279	FldCurFlux70	174
E StopDecMax	135	FldCurFlux90	174
E StopDecMin	135	FldCurRefM1	69
E StopMode	135	FldCurRefM2	69
E StopRamp	137	FldCurTrim	181
EditBlock	201	FldHeatSel	137
EditCmd	201, 244	FldMinTripDly	181, 260, 274
EMF ActFiltTime	226	FldRefGain	179
EMF CtriNegLim	174	FldRefHyst	179
EMF CtrIPosLim	174	FldRevHyst	179
EMF FbMonLev	155, 259	FldWeakDyn	174
EMF RefSel	177	FluxCorr	177
Ext IO Status	75	FluxRefEMF	69
ExtAlarmOnSel	161, 283	FluxRefFldWeak	69
ExtAlarmSel	16, 161, 283	FluxRefSum	69
ExtFaultOnSel	161, 271	FluxRevMonDly	179
ExtFaultSel	16, 160, 250, 271	FlyStart	136, 285
FanDly	136, 264	ForceFldDir	178
FaultedPar	202	GearStartTorq	152
FaultMask	158, 282	GearTorqRamp	152
FaultStopMode	160, 246, 264	GearTorqTime	152
FaultWord1	91, 262	Hand/Auto	16
FaultWord2	92, 262	HandAuto	104
FaultWord3	93, 262	HW FiltUDC	226
FaultWord4	94, 262	IndexAO1	26, 125
FB TimeOut	161, 283	IndexAO2	125
FBA PAR REFRESH	194	IndexAO3	126

IndexAO4	26, 126
10 BoardConfig	15, 18, 21, 25, 232, 267
Jog1	16, 109
Jog2	16, 109
JogAccTime	139
JogDecTime	140
KpEMF	174
KpPLL	223
KpS2	147
KpSMin	144
KpSTiSMaxSpeed	146
KpSTiSMinSpeed	146
KpSValMinSpeed	146
KpSWeakp	144
KpSWeakpFiltTime	144
Language	232, 237
LastFault	101
LimWord	88
LoadComp	150
LoadShare	149
LocalLossCtrl	159, 249, 275, 284
LocationCounter	202
LocLock	128
M1AlarmLimLoad	162, 256, 280
M1AlarmLimTemp	163, 252, 280
M1ArmL	169
M1ArmR	169
M1BaseSpeed	233, 242, 283
M1BrakeAckSel	16, 166
M1BrakeCloseDly	166
M1BrakeCtrl	166
M1BrakeOpenDly	166
M1CurLimBrdg1	133
M1CurLimBrdg2	133
M1DiscontCurLim	169
M1EncMeasMode	191
M1EncPulseNo	192
M1FaultLimLoad	162, 256, 267
M1FaultLimTemp	163, 252, 267
M1FexNode	216, 269
M1FldHeatRef	173
M1FldMinTrip	155, 260, 274
M1FldOvrCurLev	155, 258, 269
M1FldRefExt	178
M1FldRefMode	178
M1FreewhlLev	177
M1KlixonSel	16, 163, 255, 267
M1KpArmCur	168, 270, 282
M1KpFex	173
M1ModelTime	162, 256

M1NomCur	25, 233, 246
M1NomFldCur	235, 258, 260
M1NomVolt	232, 252
M1OperModeFex4	181
M1OvrSpeed	155, 260, 273, 281
M1PosLimCtrl	177
M1SpeedFbSel	192, 242, 271, 283, 285
M1SpeedMax	132, 283
M1SpeedMin	131, 283
M1SpeedScale	191, 283
M1TachoAdjust	193
M1TachoVolt1000	193
M1TempSel	22, 26, 162, 252
M1TiArmCur	169
M1TiFex	173
M1UsedFexType	235, 270
M2AlarmLimLoad	189, 280
M2AlarmLimTemp	190, 280
M2ArmL	186
M2ArmR	186
M2BaseSpeed	184, 283
M2BrakeAckSel	189
M2BrakeCloseDly	189
M2BrakeCtrl	188
M2BrakeOpenDly	189
M2CurLimBrdg1	185
M2CurLimBrdg2	185
M2DiscontCurLim	186
M2EncMeasMode	188
M2EncPulseNo	188
M2FaultLimLoad	189, 268
M2FaultLimTemp	190, 268
M2FexNode	216, 270
M2FIdHeatRef	184
M2FIdMinTrip	185, 274
M2FIdOvrCurLev	185, 270
M2FIdRefExt	180
M2FIdRefMode	180
M2FreewhlLev	180
M2KlixonSel	16, 191, 268
M2KpArmCur	185
M2KpFex	185
M2ModelTime	189
M2NomCur	184
M2NomFldCur	184
M2NomVolt	183
M2OperModeFex4	182
M2OvrSpeed	187, 281
M2PosLimCtrl	180
M2SpeedFbSel	188, 285

M2SpeedMax	187, 283	MotSel	90
M2SpeedMin	186, 283	MotSpeed	61, 273
M2SpeedScale	187, 283	MotSpeedFilt	61
M2TachoAdjust	188	MotTorq	57, 61
M2TachoVolt1000	188	MotTorqFilt	61
M2TempSel	22, 26, 190	NomMainsVolt	235, 249, 268, 269, 280
M2TiArmCur	186	Off1Mode	134
M2TiFex	185	Off2	16, 105, 279
M2UsedFexType	184	OffsetIDC	223
MacroChangeMode	128	OffsetUDC	226
MacroSel	90	OnOff1	16, 107
MailBox1	218, 275, 281	OperModeSel	167
MailBox2	218, 275, 281	OvrVoltProt	16, 107, 282
MailBox3	219, 275, 281	Par2Select	16, 148
MailBox4	220, 275, 281	ParAppISave	128
MailBoxCycle1	218, 275, 281	ParChange	16, 106
MailBoxCycle2	218, 275, 281	Parity	195
MailBoxCycle3	219, 275, 281	ParLock	127
MailBoxCycle4	220, 275, 281	ParSave	282, 285
MainContAck	16, 110, 250, 271	PassCode	201
MainContCtrlMode	136	PID Out	68
MainCtrlWord	82	PLLOut	68, 249, 269
MainsCompTime	222	PoleDampRFE	147
MainsFreqAct	64	PoleFreqRFE	147
MainStatWord	86	PosCountHigh	68
MainsVoltAct	62	PosCountInitHi	192
MainsVoltActRel	62	PosCountInitLo	192
MaxBridgeTemp	72, 246, 266, 279	PosCountLow	68
MaxCurLimSpeed	171	PosCountMode	192
ModBusModule2	230	PosSyncMode	193
Mot1FexStatus	80, 250, 270	Pot1	235
Mot1FexSwVer	71	Pot2	236
Mot1FexType	70	PowrDownTime	157, 247
Mot1FldCur	63	ProcSpeed	64
Mot1FldCurRel	63	ProgressSignal	75
Mot1TempCalc	62, 256	PwrLossTrip	156, 247, 268, 280
Mot1TempMeas	62, 252	PwrSupplyRefExt	172
Mot2FexStatus	81, 270	QuadrantType	72
Mot2FexSwVer	71	Ramp2Select	16, 139
Mot2FexType	70	RampTimeScale	137
Mot2FIdCur	63	ReactCur	68
Mot2FldCurRel	63	Ref1Mux	16, 112
Mot2TempCalc	62	Ref1Sel	22, 113
Mot2TempMeas	63	Ref2Mux	16, 114
MotCur	61, 281	Ref2Sel	22, 113
MotFanAck	16, 104, 250, 271	ResCurDetectDel	154, 252, 267
MotNomTorque	75	ResCurDetectLim	154, 252, 267
MotPotDown	16, 116	ResCurDetectSel	16, 22, 154, 252, 267
MotPotMin	16, 117	Reset	16, 103
MotPotUp	16, 115	ResetAhCounter	16, 226

RevDly	170, 250, 273	StationNumber	195
RevMode	171	StopMode	135
RevVoltMargin	176	String1	206
RFE CtrlWord	85	String2	206
RFE StatWord	90	String3	206
S BlockBridge2	222	String4	206
S ConvScaleVolt	222	String5	206
S M1FIdScale	181	StrtTorqRef	167, 276, 282
S M2FIdScale	181	StrtTorqRefSel	22, 167, 276, 282
S MaxBrdgTemp	222, 246	SyncCommand	16, 103
ScaleAO1	26, 125	SysComBoard	274
ScaleAO2	126	SysFaultWord	98
ScaleAO3	126	SysPassCode	127
ScaleAO4	26, 127	SystemTime	77
SelBridge	78	TachoHighVal	120
ServiceMode	233, 244, 281, 282	TachoLowVal	121
SetSystemTime	128	TiEMF	174
ShapeTime	138	TimeLevSel	201, 284
SpeedActEMF	61	TimeOut	272
SpeedActEnc	61	TiS	145
SpeedActTach	61	TiS2	147
SpeedCorr	140	TiSInitValue	145
SpeedErrFilt	141	TiSValMinSpeed	146
SpeedErrFilt2	142	ToolLinkConfig	129
SpeedErrNeg	64	TorqAccCompRef	64
SpeedErrorScale	147	TorqActFiltTime	225
SpeedFbFltMode	161, 246, 264, 271, 283	TorqCorr	65
SpeedFbFItSel	156, 259, 271, 283	TorqCorrect	22, 153
SpeedFbMonLev	155, 259	TorqDerRef	64
SpeedFiltTime	192	TorqGenMax	134
SpeedLev	192	TorqIntegRef	64
SpeedRampOut	67	TorqLimAct	66
SpeedRef	60, 140	TorqMax	132
SpeedRef2	64	TorqMaxAll	65
SpeedRef3	64	TorqMaxSPC	60, 132
SpeedRef4	65	TorqMaxTref	133
SpeedRefExt1	67	TorqMin	132
SpeedRefExt2	67	TorqMinAll	66
SpeedRefScale	143	TorqMinSPC	133
SpeedRefUsed	57, 65	TorqMinTref	133
SpeedScaleAct	57, 60, 67, 266, 273	TorqMux	16, 151
SpeedShare	140	TorqMuxMode	151
SpeedStep	142	TorqPropRef	64
SqrWaveIndex	236	TorqRampDown	149
SqrWavePeriod	236	TorqRampUp	149
SquareWave	67	TorqRef1	65
StallSpeed	153, 260, 272	TorqRef2	65
Stallime	153, 260, 272	TorqRef3	65
StallTorq	153, 260, 272	TorqRef4	65
StartStop	16, 108	TorqRefA	149

TorqRefA FTC	149
TorqRefA Sel	22,23
TorqRefB	149
TorqRefExt	23,66
TorqRefUsed	266
TorqSel	65
TorqUsedMax	66
TorqUsedMaxSel	22134
TorqUsedMin	66
TorqUsedMinSel	22,134
TrmtRecVal1.1	218
TrmtRecVal1.2	218
TrmtRecVal1.3	218
TrmtRecVal1.4	218
TrmtRecVal2.1	219
TrmtRecVal2.2	219
TrmtRecVal2.3	219
TrmtRecVal2.4	219
TrmtRecVal3.1	219
TrmtRecVal3.2	219
TrmtRecVal3.3	219
TrmtRecVal3.4	219
TrmtRecVal4.1	220
TrmtRecVal4.2	220
TrmtRecVal4.3	220
TrmtRecVal4.4	220

TorqRefA Sel 23
TorqRefExtTornelusedTorqUsedMaxTorqUsedMaxSel22, 134TorqUsedMinSelTrmtRecVal1.2TrmtRecVal1. 3TrmtRecVal1.4TrmtRecVal2.1TrmtRecVal2. 2TrmtRecVal2.3Trmechali. 1219
TrmtRecVal3.2219
TrmtRecVal3. 4220
左Val4.2220
TrmtRecVal4.4 220
TypeCode 221, 244, 246, 271
Uk 169
UNetMin1 156, 247, 268, 280
UnetMin2 157
UNetMin2 247, 268, 280
UsedMCW 84
UserAlarmWord 97, 262
UserFaultWord 94, 262
USI Sel 59, 128
VarSlopeRate 138
VoltActRel 62
VoltCorr 177
VoltRef1 69
VoltRef2 69
VoltRefExt 176
VoltRefSlope 177
WinCtrlMode 142
WinderScale 193
WinIntegOn 141
WinWidthNeg 142
WinWidthPos 141
ZeroCurDetect 16, 224
ZeroCurTimeOut 225, 250, 273
ZeroDampRFE 146
ZeroFreqRFE 146
ZeroSpeedLim 132, 285

[^0]: Connections
 Input IN1, IN2 and IN3 : 16 bit integer values (packed boolean)
 Output (OUT) : 16 bit integer values (packed boolean)

